SLICOT Model and Controller Reduction Toolbox includes SLICOT-based MATLAB and Fortran tools for computing reduced-order linear models and controllers. The toolbox employs theoretically sound and numerically reliable and efficient techniques, including Balance & Truncate, singular perturbation approximation, balanced stochastic truncation, frequency-weighting balancing, Hankel-norm approximation, coprime factorization, etc.

The main functionalities of the toolbox include:

  • order reduction for continuous-time and discrete-time multivariable models and controllers
  • order reduction for stable or unstable models/controllers
  • additive error model reduction
  • relative error model and controller reduction
  • frequency-weighted reduction with special stability/performance enforcing weights
  • coprime factorization-based reduction of state feedback and observer-based controllers

The toolbox main features are:

  • computational reliability using square-root and balancing-free accuracy enhancing
  • high numerical efficiency, using latest algorithmic developments, structure exploiting algorithms, and dedicated linear algebra tools
  • flexibility and easy-of-use
  • enhanced functionality, e.g, for controller reduction
  • standardized interfaces

The programs have been extensively tested on various test examples and are fully documented.


SLICOT Toolboxes for MATLAB are subject to a license fee and require an individual license agreement. Find detailed information here or contact the SLICOT Administration directly.


Andras Varga,  March 12, 2002, updated Vasile Sima,  March 10, 2005