Purpose
To print the MP-by-NP coefficient matrices of a matrix polynomial dp-1 dp P(s) = P(0) + P(1) * s + . . . + P(dp-1) * s + P(dp) * s . The elements of the matrices are output to 7 significant figures.Specification
SUBROUTINE UD01ND( MP, NP, DP, L, NOUT, P, LDP1, LDP2, TEXT, $ INFO ) C .. Scalar Arguments .. INTEGER DP, INFO, L, LDP1, LDP2, MP, NP, NOUT CHARACTER*(*) TEXT C .. Array Arguments .. DOUBLE PRECISION P(LDP1,LDP2,*)Arguments
Input/Output Parameters
MP (input) INTEGER The number of rows of the matrix polynomial P(s). MP >= 1. NP (input) INTEGER The number of columns of the matrix polynomial P(s). NP >= 1. DP (input) INTEGER The degree of the matrix polynomial P(s). DP >= 0. L (input) INTEGER The number of elements of the coefficient matrices to be printed per line. 1 <= L <= 5. NOUT (input) INTEGER The output channel to which the results are sent. NOUT >= 0. P (input) DOUBLE PRECISION array, dimension (LDP1,LDP2,DP+1) The leading MP-by-NP-by-(DP+1) part of this array must contain the coefficients of the matrix polynomial P(s). Specifically, P(i,j,k) must contain the coefficient of s**(k-1) of the polynomial which is the (i,j)-th element of P(s), where i = 1,2,...,MP, j = 1,2,...,NP and k = 1,2,...,DP+1. LDP1 INTEGER The leading dimension of array P. LDP1 >= MP. LDP2 INTEGER The second dimension of array P. LDP2 >= NP. TEXT (input) CHARACTER*72 Title caption of the coefficient matrices to be printed. TEXT is followed by the degree of the coefficient matrix, within brackets. If TEXT = ' ', then the coefficient matrices are separated by an empty line.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
For i = 1, 2, ..., DP + 1 the routine first prints the contents of TEXT followed by (i-1) as a title, followed by the elements of the MP-by-NP coefficient matrix P(i) such that (i) if NP < L, then the leading MP-by-NP part is printed; (ii) if NP = k*L + p (where k, p > 0), then k MP-by-L blocks of consecutive columns of P(i) are printed one after another followed by one MP-by-p block containing the last p columns of P(i). Row numbers are printed on the left of each row and a column number on top of each column.References
None.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* UD01ND EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER MPMAX, NPMAX, DPMAX PARAMETER ( MPMAX = 10, NPMAX = 10, DPMAX = 5 ) INTEGER LDP1, LDP2 PARAMETER ( LDP1 = MPMAX, LDP2 = NPMAX ) * .. Local Scalars .. INTEGER DP, INFO, L, MP, NP CHARACTER*72 TEXT * .. Local Arrays .. DOUBLE PRECISION P(LDP1,LDP2,DPMAX) * .. External Subroutines .. EXTERNAL UD01BD, UD01ND * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) MP, NP, DP, L, TEXT IF ( MP.LE.0 .OR. MP.GT.MPMAX ) THEN WRITE ( NOUT, FMT = 99994 ) MP ELSE IF ( NP.LE.0 .OR. NP.GT.NPMAX ) THEN WRITE ( NOUT, FMT = 99995 ) NP ELSE IF ( DP.LT.0 .OR. DP.GT.DPMAX ) THEN WRITE ( NOUT, FMT = 99993 ) DP ELSE * Read the coefficients of the matrix polynomial P(s). CALL UD01BD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO ) IF ( INFO.EQ.0 ) THEN WRITE ( NOUT, 99996 ) MP, NP, DP * Write the coefficients of the matrix polynomial P(s). CALL UD01ND( MP, NP, DP, L, NOUT, P, LDP1, LDP2, TEXT, $ INFO ) IF ( INFO.NE.0 ) $ WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) INFO END IF END IF STOP * 99999 FORMAT (' UD01ND EXAMPLE PROGRAM RESULTS', /1X) 99998 FORMAT (' INFO on exit from UD01ND = ',I2) 99997 FORMAT (' INFO on exit from UD01BD = ',I2) 99996 FORMAT (' MP =', I2, 2X, ' NP =', I2, 3X, 'DP =', I2) 99995 FORMAT (/' NP is out of range.',/' NP = ',I5) 99994 FORMAT (/' MP is out of range.',/' MP = ',I5) 99993 FORMAT (/' DP is out of range.',/' DP = ',I5) ENDProgram Data
UD01ND EXAMPLE PROGRAM DATA 4 3 2 5 P P0 1.0D-00 0.0D-00 0.0D-00 0.0D-00 2.0D-00 4.0D-00 0.0D-00 4.0D-00 8.0D-00 0.0D-00 6.0D-00 1.2D+01 P1 0.0D-00 1.0D-00 2.0D-00 1.0D-00 0.0D-00 0.0D-00 2.0D-00 0.0D-00 0.0D-00 3.0D-00 0.0D-00 0.0D-00 P2 1.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00 0.0D-00Program Results
UD01ND EXAMPLE PROGRAM RESULTS MP = 4 NP = 3 DP = 2 P( 0) ( 4X 3) 1 2 3 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 2 0.0000000D+00 0.2000000D+01 0.4000000D+01 3 0.0000000D+00 0.4000000D+01 0.8000000D+01 4 0.0000000D+00 0.6000000D+01 0.1200000D+02 P( 1) ( 4X 3) 1 2 3 1 0.0000000D+00 0.1000000D+01 0.2000000D+01 2 0.1000000D+01 0.0000000D+00 0.0000000D+00 3 0.2000000D+01 0.0000000D+00 0.0000000D+00 4 0.3000000D+01 0.0000000D+00 0.0000000D+00 P( 2) ( 4X 3) 1 2 3 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 2 0.0000000D+00 0.0000000D+00 0.0000000D+00 3 0.0000000D+00 0.0000000D+00 0.0000000D+00 4 0.0000000D+00 0.0000000D+00 0.0000000D+00