Purpose
To read the elements of a sparse matrix polynomial dp-1 dp P(s) = P(0) + P(1) * s + . . . + P(dp-1) * s + P(dp) * s .Specification
SUBROUTINE UD01CD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO ) C .. Scalar Arguments .. INTEGER DP, INFO, LDP1, LDP2, MP, NP, NIN C .. Array Arguments .. DOUBLE PRECISION P(LDP1,LDP2,*)Arguments
Input/Output Parameters
MP (input) INTEGER The number of rows of the matrix polynomial P(s). MP >= 1. NP (input) INTEGER The number of columns of the matrix polynomial P(s). NP >= 1. DP (input) INTEGER The degree of the matrix polynomial P(s). DP >= 0. NIN (input) INTEGER The input channel from which the elements of P(s) are read. NIN >= 0. P (output) DOUBLE PRECISION array, dimension (LDP1,LDP2,DP+1) The leading MP-by-NP-by-(DP+1) part of this array contains the coefficients of the matrix polynomial P(s). Specifically, P(i,j,k) contains the coefficient of s**(k-1) of the polynomial which is the (i,j)-th element of P(s), where i = 1,2,...,MP, j = 1,2,...,NP and k = 1,2,...,DP+1. The not assigned elements are set to zero. LDP1 INTEGER The leading dimension of array P. LDP1 >= MP. LDP2 INTEGER The second dimension of array P. LDP2 >= NP.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1 : if a row index i is read with i < 1 or i > MP or a column index j is read with j < 1 or j > NP or a coefficient degree d is read with d < 0 or d > DP + 1. This is a warning.Method
First, the elements P(i,j,k) with 1 <= i <= MP, 1 <= j <= NP and 1 <= k <= DP + 1 are set to zero. Next the nonzero (polynomial) elements are read from the input file NIN. Each nonzero element is given by the values i, j, d, P(i,j,k), k = 1, ..., d+1, where d is the degree and P(i,j,k) is the coefficient of s**(k-1) in the (i,j)-th element of P(s), i.e., let d P (s) = P (0) + P (1) * s + . . . + P (d) * s i,j i,j i,j i,j be the nonzero (i,j)-th element of the matrix polynomial P(s). Then P(i,j,k) corresponds to coefficient P (k-1), k = 1,...,d+1. i,j For each nonzero element, the values i, j, and d are read as one record of the file NIN, and the values P(i,j,k), k = 1,...,d+1, are read as the following record. The routine terminates after the last line has been read.References
None.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* UD01CD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER MPMAX, NPMAX, DPMAX PARAMETER ( MPMAX = 10, NPMAX = 10, DPMAX = 5 ) INTEGER LDP1, LDP2 PARAMETER ( LDP1 = MPMAX, LDP2 = NPMAX ) * .. Local Scalars .. INTEGER DP, INFO, INFO1, L, MP, NP * .. Local Arrays .. DOUBLE PRECISION P(LDP1,LDP2,DPMAX) * .. External Subroutines .. EXTERNAL UD01CD, UD01ND * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) MP, NP, DP IF ( MP.LE.0 .OR. MP.GT.MPMAX ) THEN WRITE ( NOUT, FMT = 99994 ) MP ELSE IF ( NP.LE.0 .OR. NP.GT.NPMAX ) THEN WRITE ( NOUT, FMT = 99995 ) NP ELSE IF ( DP.LT.0 .OR. DP.GT.DPMAX ) THEN WRITE ( NOUT, FMT = 99993 ) DP ELSE * Read the coefficients of the matrix polynomial P(s). CALL UD01CD( MP, NP, DP, NIN, P, LDP1, LDP2, INFO ) IF ( INFO.GE.0 ) THEN WRITE ( NOUT, 99996 ) MP, NP, DP * Write the coefficients of the matrix polynomial P(s). L = 5 CALL UD01ND( MP, NP, DP, L, NOUT, P, LDP1, LDP2, ' P', $ INFO1 ) IF ( INFO1.NE.0 ) $ WRITE ( NOUT, FMT = 99997 ) INFO1 END IF IF ( INFO.NE.0 ) $ WRITE ( NOUT, FMT = 99998 ) INFO END IF STOP * 99999 FORMAT (' UD01CD EXAMPLE PROGRAM RESULTS', /1X) 99998 FORMAT (' INFO on exit from UD01CD = ',I2) 99997 FORMAT (' INFO on exit from UD01ND = ',I2) 99996 FORMAT (' MP =', I2, 2X, ' NP =', I2, 3X, 'DP =', I2) 99995 FORMAT (/' NP is out of range.',/' NP = ',I5) 99994 FORMAT (/' MP is out of range.',/' MP = ',I5) 99993 FORMAT (/' DP is out of range.',/' DP = ',I5) ENDProgram Data
UD01CD EXAMPLE PROGRAM DATA 4 3 2 1 1 1 1.0 1.0 2 2 2 2.0 0.0 1.0 3 3 2 0.0 3.0 1.0 4 1 0 4.0Program Results
UD01CD EXAMPLE PROGRAM RESULTS MP = 4 NP = 3 DP = 2 P( 0) ( 4X 3) 1 2 3 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 2 0.0000000D+00 0.2000000D+01 0.0000000D+00 3 0.0000000D+00 0.0000000D+00 0.0000000D+00 4 0.4000000D+01 0.0000000D+00 0.0000000D+00 P( 1) ( 4X 3) 1 2 3 1 0.1000000D+01 0.0000000D+00 0.0000000D+00 2 0.0000000D+00 0.0000000D+00 0.0000000D+00 3 0.0000000D+00 0.0000000D+00 0.3000000D+01 4 0.0000000D+00 0.0000000D+00 0.0000000D+00 P( 2) ( 4X 3) 1 2 3 1 0.0000000D+00 0.0000000D+00 0.0000000D+00 2 0.0000000D+00 0.1000000D+01 0.0000000D+00 3 0.0000000D+00 0.0000000D+00 0.1000000D+01 4 0.0000000D+00 0.0000000D+00 0.0000000D+00