Purpose
To compute orthogonal transformation matrices Q and Z which reduce the regular pole pencil A-lambda*E of the descriptor system (A-lambda*E,B,C), with the A and E matrices in the form ( A11 A12 A13 ) ( E11 0 0 ) A = ( A21 A22 A23 ) , E = ( 0 0 0 ) , (1) ( A31 0 0 ) ( 0 0 0 ) where E11 and A22 are nonsingular and upper triangular matrices, to the form ( Af * ) ( Ef * ) Q'*A*Z = ( ) , Q'*E*Z = ( ) , ( 0 Ai ) ( 0 Ei ) where the subpencil Af-lambda*Ef contains the finite eigenvalues and the subpencil Ai-lambda*Ei contains the infinite eigenvalues. The subpencil Ai-lambda*Ei is in a staircase form with the matrices Ai and Ei of form ( A0,0 A0,k ... A0,1 ) ( 0 E0,k ... E0,1 ) Ai = ( 0 Ak,k ... Ak,1 ) , Ei = ( 0 0 ... Ek,1 ) , (2) ( : : ... : ) ( : : ... : ) ( 0 0 ... A1,1 ) ( 0 0 ... 0 ) where Ai,i, for i = 0, 1, ..., k, are nonsingular upper triangular matrices.Specification
SUBROUTINE TG01LY( COMPQ, COMPZ, N, M, P, RANKE, RNKA22, A, LDA, $ E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ, NF, $ NIBLCK, IBLCK, TOL, IWORK, DWORK, LDWORK, $ INFO ) C .. Scalar Arguments .. LOGICAL COMPQ, COMPZ INTEGER INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M, $ N, NF, NIBLCK, P, RANKE, RNKA22 DOUBLE PRECISION TOL C .. Array Arguments .. INTEGER IBLCK( * ), IWORK(*) DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ), $ DWORK( * ), E( LDE, * ), Q( LDQ, * ), $ Z( LDZ, * )Arguments
Mode Parameters
COMPQ LOGICAL Specify the option to accumulate or not the performed left transformations: COMPQ = .FALSE. : do not accumulate the transformations; COMPQ = .TRUE. : accumulate the transformations; in this case, Q must contain an orthogonal matrix Q1 on entry, and the product Q1*Q is returned. COMPZ LOGICAL Specify the option to accumulate or not the performed right transformations: COMPZ = .FALSE. : do not accumulate the transformations; COMPZ = .TRUE. : accumulate the transformations; in this case, Z must contain an orthogonal matrix Z1 on entry, and the product Z1*Z is returned.Input/Output Parameters
N (input) INTEGER The number of rows of the matrix B, the number of columns of the matrix C and the order of the square matrices A and E. N >= 0. M (input) INTEGER The number of columns of the matrix B. M >= 0. P (input) INTEGER The number of rows of the matrix C. P >= 0. RANKE (input) INTEGER The rank of the matrix E; also, the order of the upper triangular matrix E11. 0 <= RANKE <= N. RNKA22 (input) DOUBLE PRECISION The order of the nonsingular submatrix A22 of A. 0 <= RNKA22 <= N - RANKE. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the N-by-N state matrix A in the form (1). On exit, the leading N-by-N part of this array contains the transformed state matrix Q'*A*Z, ( Af * ) Q'*A*Z = ( ) , ( 0 Ai ) where Af is NF-by-NF and Ai is (N-NF)-by-(N-NF). The submatrix Ai is in the staircase form (2), where A0,0 is (N-RANKE)-by-(N-RANKE), and Ai,i , for i = 1, ..., NIBLCK is IBLCK(i)-by-IBLCK(i). LDA INTEGER The leading dimension of the array A. LDA >= MAX(1,N). E (input/output) DOUBLE PRECISION array, dimension (LDE,N) On entry, the leading N-by-N part of this array must contain the N-by-N descriptor matrix E in the form (1). On exit, the leading N-by-N part of this array contains the transformed descriptor matrix Q'*E*Z, ( Ef * ) Q'*E*Z = ( ) , ( 0 Ei ) where Ef is an NF-by-NF nonsingular matrix and Ei is an (N-NF)-by-(N-NF) nilpotent matrix in the staircase form (2). LDE INTEGER The leading dimension of the array E. LDE >= MAX(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,M) On entry, the leading N-by-M part of this array must contain the N-by-M input matrix B. On exit, the leading N-by-M part of this array contains the transformed input matrix Q'*B. LDB INTEGER The leading dimension of the array B. LDB >= MAX(1,N). C (input/output) DOUBLE PRECISION array, dimension (LDC,N) On entry, the leading P-by-N part of this array must contain the state/output matrix C. On exit, the leading P-by-N part of this array contains the transformed matrix C*Z. LDC INTEGER The leading dimension of the array C. LDC >= MAX(1,P). Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) If COMPQ = .FALSE., Q is not referenced. If COMPQ = .TRUE., on entry, the leading N-by-N part of this array must contain an orthogonal matrix Q1; on exit, the leading N-by-N part of this array contains the orthogonal matrix Q1*Q. LDQ INTEGER The leading dimension of the array Q. LDQ >= 1, if COMPQ = .FALSE.; LDQ >= MAX(1,N), if COMPQ = .TRUE. . Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) If COMPZ = .FALSE., Z is not referenced. If COMPZ = .TRUE., on entry, the leading N-by-N part of this array must contain an orthogonal matrix Z1; on exit, the leading N-by-N part of this array contains the orthogonal matrix Z1*Z. LDZ INTEGER The leading dimension of the array Z. LDZ >= 1, if COMPZ = .FALSE.; LDZ >= MAX(1,N), if COMPZ = .TRUE. . NF (output) INTEGER The order of the reduced matrices Af and Ef; also, the number of finite generalized eigenvalues of the pencil A-lambda*E. NIBLCK (output) INTEGER If RANKE < N, the number of infinite blocks minus one. If RANKE = N, NIBLCK = 0. IBLCK (output) INTEGER array, dimension (N) IBLCK(i) contains the dimension of the i-th block in the staircase form (2), where i = 1, 2, ..., NIBLCK.Tolerances
TOL DOUBLE PRECISION A tolerance used in rank decisions to determine the effective rank, which is defined as the order of the largest leading (or trailing) triangular submatrix in the QR factorization with column pivoting whose estimated condition number is less than 1/TOL. If the user sets TOL <= 0, then an implicitly computed, default tolerance, TOLDEF = N**2*EPS, is used instead, where EPS is the machine precision (see LAPACK Library routine DLAMCH). TOL < 1.Workspace
IWORK INTEGER array, dimension (N-RANKE) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= 1, if RANKE = N; otherwise, LDWORK >= MAX(4*(N-RANKE)-1, N-RANKE-RNKA22+MAX(N,M)). For optimal performance, LDWORK should be larger. If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message related to LDWORK is issued by XERBLA.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the pencil A-lambda*E is not regular.Method
The subroutine is based on the reduction algorithm of [1].References
[1] Misra, P., Van Dooren, P., and Varga, A. Computation of structural invariants of generalized state-space systems. Automatica, 30, pp. 1921-1936, 1994.Numerical Aspects
The algorithm is numerically backward stable and requires 0( N**3 ) floating point operations.Further Comments
The number of infinite poles is computed as NIBLCK Sum IBLCK(i) = RANKE - NF. i=1 The multiplicities of infinite poles can be computed as follows: there are IBLCK(k)-IBLCK(k+1) infinite poles of multiplicity k, for k = 1, ..., NIBLCK, where IBLCK(NIBLCK+1) = 0. Note that each infinite pole of multiplicity k corresponds to an infinite eigenvalue of multiplicity k+1.Example
Program Text
NoneProgram Data
NoneProgram Results
None