TG01FD

Orthogonal reduction of a descriptor system to a SVD-like coordinate form

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute for the descriptor system (A-lambda E,B,C)
  the orthogonal transformation matrices Q and Z such that the
  transformed system (Q'*A*Z-lambda Q'*E*Z, Q'*B, C*Z) is
  in a SVD-like coordinate form with

               ( A11  A12 )             ( Er  0 )
      Q'*A*Z = (          ) ,  Q'*E*Z = (       ) ,
               ( A21  A22 )             (  0  0 )

  where Er is an upper triangular invertible matrix.
  Optionally, the A22 matrix can be further reduced to the form

               ( Ar  X )
         A22 = (       ) ,
               (  0  0 )

  with Ar an upper triangular invertible matrix, and X either a full
  or a zero matrix.
  The left and/or right orthogonal transformations performed
  to reduce E and A22 can be optionally accumulated.

Specification
      SUBROUTINE TG01FD( COMPQ, COMPZ, JOBA, L, N, M, P, A, LDA, E, LDE,
     $                   B, LDB, C, LDC, Q, LDQ, Z, LDZ, RANKE, RNKA22,
     $                   TOL, IWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPZ, JOBA
      INTEGER            INFO, L, LDA, LDB, LDC, LDE, LDQ, LDWORK,
     $                   LDZ, M, N, P, RANKE, RNKA22
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   DWORK( * ),  E( LDE, * ), Q( LDQ, * ),
     $                   Z( LDZ, * )

Arguments

Mode Parameters

  COMPQ   CHARACTER*1
          = 'N':  do not compute Q;
          = 'I':  Q is initialized to the unit matrix, and the
                  orthogonal matrix Q is returned;
          = 'U':  Q must contain an orthogonal matrix Q1 on entry,
                  and the product Q1*Q is returned.

  COMPZ   CHARACTER*1
          = 'N':  do not compute Z;
          = 'I':  Z is initialized to the unit matrix, and the
                  orthogonal matrix Z is returned;
          = 'U':  Z must contain an orthogonal matrix Z1 on entry,
                  and the product Z1*Z is returned.

  JOBA    CHARACTER*1
          = 'N':  do not reduce A22;
          = 'R':  reduce A22 to a SVD-like upper triangular form.
          = 'T':  reduce A22 to an upper trapezoidal form.

Input/Output Parameters
  L       (input) INTEGER
          The number of rows of matrices A, B, and E.  L >= 0.

  N       (input) INTEGER
          The number of columns of matrices A, E, and C.  N >= 0.

  M       (input) INTEGER
          The number of columns of matrix B.  M >= 0.

  P       (input) INTEGER
          The number of rows of matrix C.  P >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading L-by-N part of this array must
          contain the state dynamics matrix A.
          On exit, the leading L-by-N part of this array contains
          the transformed matrix Q'*A*Z. If JOBA = 'T', this matrix
          is in the form

                        ( A11  *   *  )
               Q'*A*Z = (  *   Ar  X  ) ,
                        (  *   0   0  )

          where A11 is a RANKE-by-RANKE matrix and Ar is a
          RNKA22-by-RNKA22 invertible upper triangular matrix.
          If JOBA = 'R' then A has the above form with X = 0.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,L).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading L-by-N part of this array must
          contain the descriptor matrix E.
          On exit, the leading L-by-N part of this array contains
          the transformed matrix Q'*E*Z.

                   ( Er  0 )
          Q'*E*Z = (       ) ,
                   (  0  0 )

          where Er is a RANKE-by-RANKE upper triangular invertible
          matrix.

  LDE     INTEGER
          The leading dimension of array E.  LDE >= MAX(1,L).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading L-by-M part of this array must
          contain the input/state matrix B.
          On exit, the leading L-by-M part of this array contains
          the transformed matrix Q'*B.

  LDB     INTEGER
          The leading dimension of array B.
          LDB >= MAX(1,L) if M > 0 or LDB >= 1 if M = 0.

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the state/output matrix C.
          On exit, the leading P-by-N part of this array contains
          the transformed matrix C*Z.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,P).

  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,L)
          If COMPQ = 'N':  Q is not referenced.
          If COMPQ = 'I':  on entry, Q need not be set;
                           on exit, the leading L-by-L part of this
                           array contains the orthogonal matrix Q,
                           where Q' is the product of Householder
                           transformations which are applied to A,
                           E, and B on the left.
          If COMPQ = 'U':  on entry, the leading L-by-L part of this
                           array must contain an orthogonal matrix
                           Q1;
                           on exit, the leading L-by-L part of this
                           array contains the orthogonal matrix
                           Q1*Q.

  LDQ     INTEGER
          The leading dimension of array Q.
          LDQ >= 1,        if COMPQ = 'N';
          LDQ >= MAX(1,L), if COMPQ = 'U' or 'I'.

  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
          If COMPZ = 'N':  Z is not referenced.
          If COMPZ = 'I':  on entry, Z need not be set;
                           on exit, the leading N-by-N part of this
                           array contains the orthogonal matrix Z,
                           which is the product of Householder
                           transformations applied to A, E, and C
                           on the right.
          If COMPZ = 'U':  on entry, the leading N-by-N part of this
                           array must contain an orthogonal matrix
                           Z1;
                           on exit, the leading N-by-N part of this
                           array contains the orthogonal matrix
                           Z1*Z.

  LDZ     INTEGER
          The leading dimension of array Z.
          LDZ >= 1,        if COMPZ = 'N';
          LDZ >= MAX(1,N), if COMPZ = 'U' or 'I'.

  RANKE   (output) INTEGER
          The estimated rank of matrix E, and thus also the order
          of the invertible upper triangular submatrix Er.

  RNKA22  (output) INTEGER
          If JOBA = 'R' or 'T', then RNKA22 is the estimated rank of
          matrix A22, and thus also the order of the invertible
          upper triangular submatrix Ar.
          If JOBA = 'N', then RNKA22 is not referenced.

Tolerances
  TOL     DOUBLE PRECISION
          The tolerance to be used in determining the rank of E
          and of A22. If the user sets TOL > 0, then the given
          value of TOL is used as a lower bound for the
          reciprocal condition numbers of leading submatrices
          of R or R22 in the QR decompositions E * P = Q * R of E
          or A22 * P22 = Q22 * R22 of A22.
          A submatrix whose estimated condition number is less than
          1/TOL is considered to be of full rank.  If the user sets
          TOL <= 0, then an implicitly computed, default tolerance,
          defined by  TOLDEF = L*N*EPS,  is used instead, where
          EPS is the machine precision (see LAPACK Library routine
          DLAMCH). TOL < 1.

Workspace
  IWORK   INTEGER array, dimension (N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK >= MAX( 1, N+P, MIN(L,N)+MAX(3*N-1,M,L) ).
          For optimal performance, LDWORK should be larger.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.

Method
  The routine computes a truncated QR factorization with column
  pivoting of E, in the form

                    ( E11 E12 )
        E * P = Q * (         )
                    (  0  E22 )

  and finds the largest RANKE-by-RANKE leading submatrix E11 whose
  estimated condition number is less than 1/TOL. RANKE defines thus
  the rank of matrix E. Further E22, being negligible, is set to
  zero, and an orthogonal matrix Y is determined such that

        ( E11 E12 ) = ( Er  0 ) * Y .

  The overal transformation matrix Z results as Z = P * Y' and the
  resulting transformed matrices Q'*A*Z and Q'*E*Z have the form

                       ( Er  0 )                      ( A11  A12 )
      E <- Q'* E * Z = (       ) ,  A <- Q' * A * Z = (          ) ,
                       (  0  0 )                      ( A21  A22 )

  where Er is an upper triangular invertible matrix.
  If JOBA = 'R' the same reduction is performed on A22 to obtain it
  in the form

               ( Ar  0 )
         A22 = (       ) ,
               (  0  0 )

  with Ar an upper triangular invertible matrix.
  If JOBA = 'T' then A22 is row compressed using the QR
  factorization with column pivoting to the form

               ( Ar  X )
         A22 = (       )
               (  0  0 )

  with Ar an upper triangular invertible matrix.

  The transformations are also applied to the rest of system
  matrices

       B <- Q' * B, C <- C * Z.

Numerical Aspects
  The algorithm is numerically backward stable and requires
  0( L*L*N )  floating point operations.

Further Comments
  None
Example

Program Text

*     TG01FD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          LMAX, NMAX, MMAX, PMAX
      PARAMETER        ( LMAX = 20, NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDE, LDQ, LDZ
      PARAMETER        ( LDA = LMAX, LDB = LMAX, LDC = PMAX,
     $                   LDE = LMAX, LDQ = LMAX, LDZ = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = MAX( 1, PMAX,
     $                   MIN(LMAX,NMAX)+MAX( 3*NMAX, MMAX, LMAX ) ) )
*     .. Local Scalars ..
      CHARACTER*1      COMPQ, COMPZ, JOBA
      INTEGER          I, INFO, J, L, M, N, P, RANKE, RNKA22
      DOUBLE PRECISION TOL
*     .. Local Arrays ..
      INTEGER          IWORK(NMAX)
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), E(LDE,NMAX), Q(LDQ,LMAX),
     $                 Z(LDZ,NMAX)
*     .. External Subroutines ..
      EXTERNAL         TG01FD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX, MIN
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) L, N, M, P, TOL
      COMPQ = 'I'
      COMPZ = 'I'
      JOBA = 'R'
      IF ( L.LT.0 .OR. L.GT.LMAX ) THEN
         WRITE ( NOUT, FMT = 99989 ) L
      ELSE
         IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
            WRITE ( NOUT, FMT = 99988 ) N
         ELSE
            READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,L )
            READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,L )
            IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
               WRITE ( NOUT, FMT = 99987 ) M
            ELSE
               READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,L )
               IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
                  WRITE ( NOUT, FMT = 99986 ) P
               ELSE
                  READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
*                 Find the transformed descriptor system
*                 (A-lambda E,B,C).
                  CALL TG01FD( COMPQ, COMPZ, JOBA, L, N, M, P, A, LDA,
     $                         E, LDE, B, LDB, C, LDC, Q, LDQ, Z, LDZ,
     $                         RANKE, RNKA22, TOL, IWORK, DWORK, LDWORK,
     $                         INFO )
*
                  IF ( INFO.NE.0 ) THEN
                     WRITE ( NOUT, FMT = 99998 ) INFO
                  ELSE
                     WRITE ( NOUT, FMT = 99994 ) RANKE, RNKA22
                     WRITE ( NOUT, FMT = 99997 )
                     DO 10 I = 1, L
                        WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   10                CONTINUE
                     WRITE ( NOUT, FMT = 99996 )
                     DO 20 I = 1, L
                        WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N )
   20                CONTINUE
                     WRITE ( NOUT, FMT = 99993 )
                     DO 30 I = 1, L
                        WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   30                CONTINUE
                     WRITE ( NOUT, FMT = 99992 )
                     DO 40 I = 1, P
                        WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
   40                CONTINUE
                     WRITE ( NOUT, FMT = 99991 )
                     DO 50 I = 1, L
                        WRITE ( NOUT, FMT = 99995 ) ( Q(I,J), J = 1,L )
   50                CONTINUE
                     WRITE ( NOUT, FMT = 99990 )
                     DO 60 I = 1, N
                        WRITE ( NOUT, FMT = 99995 ) ( Z(I,J), J = 1,N )
   60                CONTINUE
                  END IF
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TG01FD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01FD = ',I2)
99997 FORMAT (/' The transformed state dynamics matrix Q''*A*Z is ')
99996 FORMAT (/' The transformed descriptor matrix Q''*E*Z is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (' Rank of matrix E   =', I5/
     $        ' Rank of matrix A22 =', I5)
99993 FORMAT (/' The transformed input/state matrix Q''*B is ')
99992 FORMAT (/' The transformed state/output matrix C*Z is ')
99991 FORMAT (/' The left transformation matrix Q is ')
99990 FORMAT (/' The right transformation matrix Z is ')
99989 FORMAT (/' L is out of range.',/' L = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' M is out of range.',/' M = ',I5)
99986 FORMAT (/' P is out of range.',/' P = ',I5)
      END
Program Data
TG01FD EXAMPLE PROGRAM DATA
  4    4     2     2     0.0    
    -1     0     0     3
     0     0     1     2
     1     1     0     4
     0     0     0     0
     1     2     0     0
     0     1     0     1
     3     9     6     3
     0     0     2     0
     1     0
     0     0
     0     1
     1     1
    -1     0     1     0
     0     1    -1     1
Program Results
 TG01FD EXAMPLE PROGRAM RESULTS

 Rank of matrix E   =    3
 Rank of matrix A22 =    1

 The transformed state dynamics matrix Q'*A*Z is 
   2.0278   0.1078   3.9062  -2.1571
  -0.0980   0.2544   1.6053  -0.1269
   0.2713   0.7760  -0.3692  -0.4853
   0.0690  -0.5669  -2.1974   0.3086

 The transformed descriptor matrix Q'*E*Z is 
  10.1587   5.8230   1.3021   0.0000
   0.0000  -2.4684  -0.1896   0.0000
   0.0000   0.0000   1.0338   0.0000
   0.0000   0.0000   0.0000   0.0000

 The transformed input/state matrix Q'*B is 
  -0.2157  -0.9705
   0.3015   0.9516
   0.7595   0.0991
   1.1339   0.3780

 The transformed state/output matrix C*Z is 
   0.3651  -1.0000  -0.4472  -0.8165
  -1.0954   1.0000  -0.8944   0.0000

 The left transformation matrix Q is 
  -0.2157  -0.5088   0.6109   0.5669
  -0.1078  -0.2544  -0.7760   0.5669
  -0.9705   0.1413  -0.0495  -0.1890
   0.0000   0.8102   0.1486   0.5669

 The right transformation matrix Z is 
  -0.3651   0.0000   0.4472   0.8165
  -0.9129   0.0000   0.0000  -0.4082
   0.0000  -1.0000   0.0000   0.0000
  -0.1826   0.0000  -0.8944   0.4082

Return to index