Purpose
To balance the matrices of the system pencil S = ( A B ) - lambda ( E 0 ) := Q - lambda Z, ( C 0 ) ( 0 0 ) corresponding to the descriptor triple (A-lambda E,B,C), by balancing. This involves diagonal similarity transformations (Dl*A*Dr - lambda Dl*E*Dr, Dl*B, C*Dr) applied to the system (A-lambda E,B,C) to make the rows and columns of system pencil matrices diag(Dl,I) * S * diag(Dr,I) as close in norm as possible. Balancing may reduce the 1-norms of the matrices of the system pencil S. The balancing can be performed optionally on the following particular system pencils S = A-lambda E, S = ( A-lambda E B ), or S = ( A-lambda E ). ( C )Specification
SUBROUTINE TG01AD( JOB, L, N, M, P, THRESH, A, LDA, E, LDE, $ B, LDB, C, LDC, LSCALE, RSCALE, DWORK, INFO ) C .. Scalar Arguments .. CHARACTER JOB INTEGER INFO, L, LDA, LDB, LDC, LDE, M, N, P DOUBLE PRECISION THRESH C .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ), $ DWORK( * ), E( LDE, * ), LSCALE( * ), $ RSCALE( * )Arguments
Mode Parameters
JOB CHARACTER*1 Indicates which matrices are involved in balancing, as follows: = 'A': All matrices are involved in balancing; = 'B': B, A and E matrices are involved in balancing; = 'C': C, A and E matrices are involved in balancing; = 'N': B and C matrices are not involved in balancing.Input/Output Parameters
L (input) INTEGER The number of rows of matrices A, B, and E. L >= 0. N (input) INTEGER The number of columns of matrices A, E, and C. N >= 0. M (input) INTEGER The number of columns of matrix B. M >= 0. P (input) INTEGER The number of rows of matrix C. P >= 0. THRESH (input) DOUBLE PRECISION Threshold value for magnitude of elements: elements with magnitude less than or equal to THRESH are ignored for balancing. THRESH >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading L-by-N part of this array must contain the state dynamics matrix A. On exit, the leading L-by-N part of this array contains the balanced matrix Dl*A*Dr. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,L). E (input/output) DOUBLE PRECISION array, dimension (LDE,N) On entry, the leading L-by-N part of this array must contain the descriptor matrix E. On exit, the leading L-by-N part of this array contains the balanced matrix Dl*E*Dr. LDE INTEGER The leading dimension of array E. LDE >= MAX(1,L). B (input/output) DOUBLE PRECISION array, dimension (LDB,M) On entry, the leading L-by-M part of this array must contain the input/state matrix B. On exit, if M > 0, the leading L-by-M part of this array contains the balanced matrix Dl*B. The array B is not referenced if M = 0. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,L) if M > 0 or LDB >= 1 if M = 0. C (input/output) DOUBLE PRECISION array, dimension (LDC,N) On entry, the leading P-by-N part of this array must contain the state/output matrix C. On exit, if P > 0, the leading P-by-N part of this array contains the balanced matrix C*Dr. The array C is not referenced if P = 0. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,P). LSCALE (output) DOUBLE PRECISION array, dimension (L) The scaling factors applied to S from left. If Dl(j) is the scaling factor applied to row j, then SCALE(j) = Dl(j), for j = 1,...,L. RSCALE (output) DOUBLE PRECISION array, dimension (N) The scaling factors applied to S from right. If Dr(j) is the scaling factor applied to column j, then SCALE(j) = Dr(j), for j = 1,...,N.Workspace
DWORK DOUBLE PRECISION array, dimension (3*(L+N))Error Indicator
INFO INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.Method
Balancing consists of applying a diagonal similarity transformation -1 diag(Dl,I) * S * diag(Dr,I) to make the 1-norms of each row of the first L rows of S and its corresponding N columns nearly equal. Information about the diagonal matrices Dl and Dr are returned in the vectors LSCALE and RSCALE, respectively.References
[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. LAPACK Users' Guide: Second Edition. SIAM, Philadelphia, 1995. [2] R.C. Ward, R. C. Balancing the generalized eigenvalue problem. SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* TG01AD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER LMAX, NMAX, MMAX, PMAX PARAMETER ( LMAX = 20, NMAX = 20, MMAX = 20, PMAX = 20 ) INTEGER LDA, LDB, LDC, LDE PARAMETER ( LDA = LMAX, LDB = LMAX, LDC = PMAX, $ LDE = LMAX ) INTEGER LDWORK PARAMETER ( LDWORK = MAX( 1, 3*(LMAX+NMAX ) ) ) * .. Local Scalars .. CHARACTER*1 JOBS INTEGER I, INFO, J, L, M, N, P DOUBLE PRECISION ABCNRM, ENORM, SABCNM, SENORM, THRESH * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX), $ DWORK(LDWORK), E(LDE,NMAX), LSCALE(LMAX), $ RSCALE(NMAX) * .. External Functions .. DOUBLE PRECISION DLANGE EXTERNAL DLANGE * .. External Subroutines .. EXTERNAL TG01AD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) L, N, M, P, JOBS, THRESH IF ( L.LT.0 .OR. L.GT.LMAX ) THEN WRITE ( NOUT, FMT = 99989 ) L ELSE IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99988 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,L ) READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,L ) IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99987 ) M ELSE READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,L ) IF ( P.LT.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99986 ) P ELSE READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P ) * Compute norms before scaling ABCNRM = MAX( DLANGE( '1', L, N, A, LDA, DWORK ), $ DLANGE( '1', L, M, B, LDB, DWORK ), $ DLANGE( '1', P, N, C, LDC, DWORK ) ) ENORM = DLANGE( '1', L, N, E, LDE, DWORK ) * Find the transformed descriptor system * (A-lambda E,B,C). CALL TG01AD( JOBS, L, N, M, P, THRESH, A, LDA, E, LDE, $ B, LDB, C, LDC, LSCALE, RSCALE, DWORK, $ INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE SABCNM = MAX( DLANGE( '1', L, N, A, LDA, DWORK ), $ DLANGE( '1', L, M, B, LDB, DWORK ), $ DLANGE( '1', P, N, C, LDC, DWORK ) ) SENORM = DLANGE( '1', L, N, E, LDE, DWORK ) WRITE ( NOUT, FMT = 99997 ) DO 10 I = 1, L WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N ) 10 CONTINUE WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, L WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N ) 20 CONTINUE WRITE ( NOUT, FMT = 99993 ) DO 30 I = 1, L WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M ) 30 CONTINUE WRITE ( NOUT, FMT = 99992 ) DO 40 I = 1, P WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N ) 40 CONTINUE WRITE ( NOUT, FMT = 99991 ) WRITE ( NOUT, FMT = 99995 ) ( LSCALE(I), I = 1,L ) WRITE ( NOUT, FMT = 99990 ) WRITE ( NOUT, FMT = 99995 ) ( RSCALE(J), J = 1,N ) WRITE ( NOUT, FMT = 99994 ) $ ABCNRM, SABCNM, ENORM, SENORM END IF END IF END IF END IF END IF STOP * 99999 FORMAT (' TG01AD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from TG01AD = ',I2) 99997 FORMAT (/' The transformed state dynamics matrix Dl*A*Dr is ') 99996 FORMAT (/' The transformed descriptor matrix Dl*E*Dr is ') 99995 FORMAT (20(1X,F9.4)) 99994 FORMAT (/' Norm of [ A B; C 0] =', 1PD10.3/ $ ' Norm of scaled [ A B; C 0] =', 1PD10.3/ $ ' Norm of E =', 1PD10.3/ $ ' Norm of scaled E =', 1PD10.3) 99993 FORMAT (/' The transformed input/state matrix Dl*B is ') 99992 FORMAT (/' The transformed state/output matrix C*Dr is ') 99991 FORMAT (/' The diagonal of left scaling matrix Dl is ') 99990 FORMAT (/' The diagonal of right scaling matrix Dr is ') 99989 FORMAT (/' L is out of range.',/' L = ',I5) 99988 FORMAT (/' N is out of range.',/' N = ',I5) 99987 FORMAT (/' M is out of range.',/' M = ',I5) 99986 FORMAT (/' P is out of range.',/' P = ',I5) ENDProgram Data
TG01AD EXAMPLE PROGRAM DATA 4 4 2 2 A 0.0 -1 0 0 0.003 0 0 0.1000 0.02 100 10 0 0.4 0 0 0 0.0 1 0.2 0 0.0 0 1 0 0.01 300 90 6 0.3 0 0 20 0.0 10 0 0 0 0 1000 10000 10000 -0.1 0.0 0.001 0.0 0.0 0.01 -0.001 0.0001Program Results
TG01AD EXAMPLE PROGRAM RESULTS The transformed state dynamics matrix Dl*A*Dr is -1.0000 0.0000 0.0000 0.3000 0.0000 0.0000 1.0000 2.0000 1.0000 0.1000 0.0000 0.4000 0.0000 0.0000 0.0000 0.0000 The transformed descriptor matrix Dl*E*Dr is 1.0000 0.2000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 3.0000 0.9000 0.6000 0.3000 0.0000 0.0000 0.2000 0.0000 The transformed input/state matrix Dl*B is 100.0000 0.0000 0.0000 0.0000 0.0000 100.0000 100.0000 100.0000 The transformed state/output matrix C*Dr is -0.0100 0.0000 0.0010 0.0000 0.0000 0.0010 -0.0010 0.0010 The diagonal of left scaling matrix Dl is 10.0000 10.0000 0.1000 0.0100 The diagonal of right scaling matrix Dr is 0.1000 0.1000 1.0000 10.0000 Norm of [ A B; C 0] = 1.100D+04 Norm of scaled [ A B; C 0] = 2.000D+02 Norm of E = 3.010D+02 Norm of scaled E = 4.000D+00