Purpose
To find a relatively prime left or right polynomial matrix representation for a proper transfer matrix T(s) given as either row or column polynomial vectors over common denominator polynomials, possibly with uncancelled common terms.Specification
SUBROUTINE TD03AD( ROWCOL, LERI, EQUIL, M, P, INDEXD, DCOEFF, $ LDDCOE, UCOEFF, LDUCO1, LDUCO2, NR, A, LDA, B, $ LDB, C, LDC, D, LDD, INDEXP, PCOEFF, LDPCO1, $ LDPCO2, QCOEFF, LDQCO1, LDQCO2, VCOEFF, LDVCO1, $ LDVCO2, TOL, IWORK, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER EQUIL, LERI, ROWCOL INTEGER INFO, LDA, LDB, LDC, LDD, LDDCOE, LDPCO1, $ LDPCO2, LDQCO1, LDQCO2, LDUCO1, LDUCO2, LDVCO1, $ LDVCO2, LDWORK, M, NR, P DOUBLE PRECISION TOL C .. Array Arguments .. INTEGER INDEXD(*), INDEXP(*), IWORK(*) DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), $ DCOEFF(LDDCOE,*), DWORK(*), $ PCOEFF(LDPCO1,LDPCO2,*), $ QCOEFF(LDQCO1,LDQCO2,*), $ UCOEFF(LDUCO1,LDUCO2,*), VCOEFF(LDVCO1,LDVCO2,*)Arguments
Mode Parameters
ROWCOL CHARACTER*1 Indicates whether T(s) is to be factorized by rows or by columns as follows: = 'R': T(s) is factorized by rows; = 'C': T(s) is factorized by columns. LERI CHARACTER*1 Indicates whether a left or a right polynomial matrix representation is required as follows: = 'L': A left polynomial matrix representation inv(P(s))*Q(s) is required; = 'R': A right polynomial matrix representation Q(s)*inv(P(s)) is required. EQUIL CHARACTER*1 Specifies whether the user wishes to balance the triplet (A,B,C), before computing a minimal state-space representation, as follows: = 'S': Perform balancing (scaling); = 'N': Do not perform balancing.Input/Output Parameters
M (input) INTEGER The number of system inputs. M >= 0. P (input) INTEGER The number of system outputs. P >= 0. INDEXD (input) INTEGER array, dimension (P), if ROWCOL = 'R', or dimension (M), if ROWCOL = 'C'. The leading pormd elements of this array must contain the row degrees of the denominator polynomials in D(s). pormd = P if the transfer matrix T(s) is given as row polynomial vectors over denominator polynomials; pormd = M if the transfer matrix T(s) is given as column polynomial vectors over denominator polynomials. DCOEFF (input) DOUBLE PRECISION array, dimension (LDDCOE,kdcoef), where kdcoef = MAX(INDEXD(I)) + 1. The leading pormd-by-kdcoef part of this array must contain the coefficients of each denominator polynomial. DCOEFF(I,K) is the coefficient in s**(INDEXD(I)-K+1) of the I-th denominator polynomial in D(s), where K = 1,2, ...,kdcoef. LDDCOE INTEGER The leading dimension of array DCOEFF. LDDCOE >= MAX(1,P), if ROWCOL = 'R'; LDDCOE >= MAX(1,M), if ROWCOL = 'C'. UCOEFF (input) DOUBLE PRECISION array, dimension (LDUCO1,LDUCO2,kdcoef) The leading P-by-M-by-kdcoef part of this array must contain the coefficients of the numerator matrix U(s); if ROWCOL = 'C', this array is modified internally but restored on exit, and the remainder of the leading MAX(M,P)-by-MAX(M,P)-by-kdcoef part is used as internal workspace. UCOEFF(I,J,K) is the coefficient in s**(INDEXD(iorj)-K+1) of polynomial (I,J) of U(s), where K = 1,2,...,kdcoef; iorj = I if T(s) is given as row polynomial vectors over denominator polynomials; iorj = J if T(s) is given as column polynomial vectors over denominator polynomials. Thus for ROWCOL = 'R', U(s) = diag(s**INDEXD(I))*(UCOEFF(.,.,1)+UCOEFF(.,.,2)/s+...). LDUCO1 INTEGER The leading dimension of array UCOEFF. LDUCO1 >= MAX(1,P), if ROWCOL = 'R'; LDUCO1 >= MAX(1,M,P), if ROWCOL = 'C'. LDUCO2 INTEGER The second dimension of array UCOEFF. LDUCO2 >= MAX(1,M), if ROWCOL = 'R'; LDUCO2 >= MAX(1,M,P), if ROWCOL = 'C'. NR (output) INTEGER The order of the resulting minimal realization, i.e. the order of the state dynamics matrix A. A (output) DOUBLE PRECISION array, dimension (LDA,N), pormd where N = SUM INDEXD(I) I=1 The leading NR-by-NR part of this array contains the upper block Hessenberg state dynamics matrix A. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,N). B (output) DOUBLE PRECISION array, dimension (LDB,MAX(M,P)) The leading NR-by-M part of this array contains the input/state matrix B; the remainder of the leading N-by-MAX(M,P) part is used as internal workspace. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,N). C (output) DOUBLE PRECISION array, dimension (LDC,N) The leading P-by-NR part of this array contains the state/output matrix C; the remainder of the leading MAX(M,P)-by-N part is used as internal workspace. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,M,P). D (output) DOUBLE PRECISION array, dimension (LDD,MAX(M,P)) The leading P-by-M part of this array contains the direct transmission matrix D; the remainder of the leading MAX(M,P)-by-MAX(M,P) part is used as internal workspace. LDD INTEGER The leading dimension of array D. LDD >= MAX(1,M,P). INDEXP (output) INTEGER array, dimension (P), if ROWCOL = 'R', or dimension (M), if ROWCOL = 'C'. The leading pormp elements of this array contain the row (column if ROWCOL = 'C') degrees of the denominator matrix P(s). pormp = P if a left polynomial matrix representation is requested; pormp = M if a right polynomial matrix representation is requested. These elements are ordered so that INDEXP(1) >= INDEXP(2) >= ... >= INDEXP(pormp). PCOEFF (output) DOUBLE PRECISION array, dimension (LDPCO1,LDPCO2,N+1) The leading pormp-by-pormp-by-kpcoef part of this array contains the coefficients of the denominator matrix P(s), where kpcoef = MAX(INDEXP(I)) + 1. PCOEFF(I,J,K) is the coefficient in s**(INDEXP(iorj)-K+1) of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; iorj = I if a left polynomial matrix representation is requested; iorj = J if a right polynomial matrix representation is requested. Thus for a left polynomial matrix representation, P(s) = diag(s**INDEXP(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...). LDPCO1 INTEGER The leading dimension of array PCOEFF. LDPCO1 >= MAX(1,P), if ROWCOL = 'R'; LDPCO1 >= MAX(1,M), if ROWCOL = 'C'. LDPCO2 INTEGER The second dimension of array PCOEFF. LDPCO2 >= MAX(1,P), if ROWCOL = 'R'; LDPCO2 >= MAX(1,M), if ROWCOL = 'C'. QCOEFF (output) DOUBLE PRECISION array, dimension (LDQCO1,LDQCO2,N+1) The leading pormp-by-pormd-by-kpcoef part of this array contains the coefficients of the numerator matrix Q(s). QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K). LDQCO1 INTEGER The leading dimension of array QCOEFF. If LERI = 'L', LDQCO1 >= MAX(1,PM), where PM = P, if ROWCOL = 'R'; PM = M, if ROWCOL = 'C'. If LERI = 'R', LDQCO1 >= MAX(1,M,P). LDQCO2 INTEGER The second dimension of array QCOEFF. If LERI = 'L', LDQCO2 >= MAX(1,MP), where MP = M, if ROWCOL = 'R'; MP = P, if ROWCOL = 'C'. If LERI = 'R', LDQCO2 >= MAX(1,M,P). VCOEFF (output) DOUBLE PRECISION array, dimension (LDVCO1,LDVCO2,N+1) The leading pormp-by-NR-by-kpcoef part of this array contains the coefficients of the intermediate matrix V(s) as produced by SLICOT Library routine TB03AD. LDVCO1 INTEGER The leading dimension of array VCOEFF. LDVCO1 >= MAX(1,P), if ROWCOL = 'R'; LDVCO1 >= MAX(1,M), if ROWCOL = 'C'. LDVCO2 INTEGER The second dimension of array VCOEFF. LDVCO2 >= MAX(1,N).Tolerances
TOL DOUBLE PRECISION The tolerance to be used in rank determination when transforming (A, B, C). If the user sets TOL > 0, then the given value of TOL is used as a lower bound for the reciprocal condition number (see the description of the argument RCOND in the SLICOT routine MB03OD); a (sub)matrix whose estimated condition number is less than 1/TOL is considered to be of full rank. If the user sets TOL <= 0, then an implicitly computed, default tolerance (determined by the SLICOT routine TB01UD) is used instead.Workspace
IWORK INTEGER array, dimension (N+MAX(M,P)) On exit, if INFO = 0, the first nonzero elements of IWORK(1:N) return the orders of the diagonal blocks of A. DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= MAX(1, N + MAX(N, 3*M, 3*P), PM*(PM + 2)) where PM = P, if ROWCOL = 'R'; PM = M, if ROWCOL = 'C'. For optimum performance LDWORK should be larger.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; > 0: if INFO = i (i <= k = pormd), then i is the first integer I for which ABS( DCOEFF(I,1) ) is so small that the calculations would overflow (see SLICOT Library routine TD03AY); that is, the leading coefficient of a polynomial is nearly zero; no state-space representation or polynomial matrix representation is calculated; = k+1: if a singular matrix was encountered during the computation of V(s); = k+2: if a singular matrix was encountered during the computation of P(s).Method
The method for transfer matrices factorized by rows will be described here; T(s) factorized by columns is dealt with by operating on the dual T'(s). The description for T(s) is actually the left polynomial matrix representation T(s) = inv(D(s))*U(s), where D(s) is diagonal with its (I,I)-th polynomial element of degree INDEXD(I). The first step is to check whether the leading coefficient of any polynomial element of D(s) is approximately zero, if so the routine returns with INFO > 0. Otherwise, Wolovich's Observable Structure Theorem is used to construct a state-space representation in observable companion form which is equivalent to the above polynomial matrix representation. The method is particularly easy here due to the diagonal form of D(s). This state-space representation is not necessarily controllable (as D(s) and U(s) are not necessarily relatively left prime), but it is in theory completely observable; however, its observability matrix may be poorly conditioned, so it is treated as a general state-space representation and SLICOT Library routine TB03AD is used to separate out a minimal realization for T(s) from it by means of orthogonal similarity transformations and then to calculate a relatively prime (left or right) polynomial matrix representation which is equivalent to this.References
[1] Patel, R.V. On Computing Matrix Fraction Descriptions and Canonical Forms of Linear Time-Invariant Systems. UMIST Control Systems Centre Report 489, 1980. [2] Wolovich, W.A. Linear Multivariable Systems, (Theorem 4.3.3). Springer-Verlag, 1974.Numerical Aspects
3 The algorithm requires 0(N ) operations.Further Comments
NoneExample
Program Text
* TD03AD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER MMAX, PMAX, KDCMAX, NMAX PARAMETER ( MMAX = 8, PMAX = 8, KDCMAX = 8, NMAX = 8 ) INTEGER MAXMP PARAMETER ( MAXMP = MAX( MMAX, PMAX ) ) INTEGER LDA, LDB, LDC, LDD, LDDCOE, LDPCO1, LDPCO2, $ LDQCO1, LDQCO2, LDUCO1, LDUCO2, LDVCO1, LDVCO2 PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = MAXMP, $ LDD = MAXMP, LDDCOE = MAXMP, $ LDPCO1 = MAXMP, LDPCO2 = MAXMP, $ LDQCO1 = MAXMP, LDQCO2 = MAXMP, $ LDUCO1 = MAXMP, LDUCO2 = MAXMP, $ LDVCO1 = MAXMP, LDVCO2 = NMAX ) INTEGER LIWORK PARAMETER ( LIWORK = NMAX + MAXMP ) INTEGER LDWORK PARAMETER ( LDWORK = MAX( NMAX + MAX( NMAX, 3*MAXMP ), $ MAXMP*( MAXMP + 2 ) ) ) * .. Local Scalars .. DOUBLE PRECISION TOL CHARACTER*1 EQUIL, LERI, ROWCOL INTEGER I, INDBLK, INFO, J, K, KDCOEF, M, MAXINP, N, NR, $ P, PORMD, PORMP * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), B(LDB,MAXMP), C(LDC,NMAX), $ D(LDD,MAXMP), DCOEFF(LDDCOE,KDCMAX), $ DWORK(LDWORK), PCOEFF(LDPCO1,LDPCO2,NMAX+1), $ QCOEFF(LDQCO1,LDQCO2,NMAX+1), $ UCOEFF(LDUCO1,LDUCO2,KDCMAX), $ VCOEFF(LDVCO1,LDVCO2,NMAX+1) INTEGER INDEXD(MAXMP), INDEXP(MAXMP), IWORK(LIWORK) * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL TD03AD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) M, P, TOL, ROWCOL, LERI, EQUIL IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99986 ) M ELSE IF ( P.LT.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99985 ) P ELSE PORMD = P IF ( LSAME( ROWCOL, 'C' ) ) PORMD = M PORMP = M IF ( LSAME( LERI, 'R' ) ) PORMP = P READ ( NIN, FMT = * ) ( INDEXD(I), I = 1,PORMD ) * KDCOEF = 0 N = 0 DO 20 I = 1, PORMD KDCOEF = MAX( KDCOEF, INDEXD(I) ) N = N + INDEXD(I) 20 CONTINUE KDCOEF = KDCOEF + 1 * IF ( KDCOEF.LE.0 .OR. KDCOEF.GT.KDCMAX ) THEN WRITE ( NOUT, FMT = 99984 ) KDCOEF ELSE READ ( NIN, FMT = * ) $ ( ( DCOEFF(I,J), J = 1,KDCOEF ), I = 1,PORMD ) READ ( NIN, FMT = * ) $ ( ( ( UCOEFF(I,J,K), K = 1,KDCOEF ), J = 1,M ), I = 1,P ) * Find a relatively prime left pmr for the given transfer * function. CALL TD03AD( ROWCOL, LERI, EQUIL, M, P, INDEXD, DCOEFF, $ LDDCOE, UCOEFF, LDUCO1, LDUCO2, NR, A, LDA, B, $ LDB, C, LDC, D, LDD, INDEXP, PCOEFF, LDPCO1, $ LDPCO2, QCOEFF, LDQCO1, LDQCO2, VCOEFF, LDVCO1, $ LDVCO2, TOL, IWORK, DWORK, LDWORK, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) NR DO 40 I = 1, NR WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,NR ) 40 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 60 I = 1, NR WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,M ) 60 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 80 I = 1, P WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,NR ) 80 CONTINUE WRITE ( NOUT, FMT = 99993 ) DO 100 I = 1, P WRITE ( NOUT, FMT = 99996 ) ( D(I,J), J = 1,M ) 100 CONTINUE INDBLK = 0 DO 120 I = 1, N IF ( IWORK(I).NE.0 ) INDBLK = INDBLK + 1 120 CONTINUE IF ( LSAME( LERI, 'L' ) ) THEN WRITE ( NOUT, FMT = 99992 ) INDBLK, $ ( IWORK(I), I = 1,INDBLK ) WRITE ( NOUT, FMT = 99990 ) ( INDEXP(I), I = 1,P ) ELSE WRITE ( NOUT, FMT = 99991 ) INDBLK, $ ( IWORK(I), I = 1,INDBLK ) WRITE ( NOUT, FMT = 99989 ) ( INDEXP(I), I = 1,M ) END IF MAXINP = 0 DO 140 I = 1, PORMP MAXINP = MAX( MAXINP, INDEXP(I) ) 140 CONTINUE MAXINP = MAXINP + 1 WRITE ( NOUT, FMT = 99988 ) DO 180 I = 1, PORMP DO 160 J = 1, PORMP WRITE ( NOUT, FMT = 99996 ) $ ( PCOEFF(I,J,K), K = 1,MAXINP ) 160 CONTINUE 180 CONTINUE WRITE ( NOUT, FMT = 99987 ) DO 220 I = 1, PORMP DO 200 J = 1, PORMD WRITE ( NOUT, FMT = 99996 ) $ ( QCOEFF(I,J,K), K = 1,MAXINP ) 200 CONTINUE 220 CONTINUE END IF END IF END IF STOP * 99999 FORMAT (' TD03AD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from TD03AD = ',I2) 99997 FORMAT (' The order of the resulting minimal realization = ',I2, $ //' The state dynamics matrix A is ') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' The input/state matrix B is ') 99994 FORMAT (/' The state/output matrix C is ') 99993 FORMAT (/' The direct transmission matrix D is ') 99992 FORMAT (/' The observability index of the minimal realization = ', $ I2,//' The dimensions of the diagonal blocks of the state', $ ' dynamics matrix are ',/20(I5)) 99991 FORMAT (/' The controllability index of the minimal realization ', $ '= ',I2,//' The dimensions of the diagonal blocks of the ', $ 'state dynamics matrix are ',/20(I5)) 99990 FORMAT (/' The row degrees of the denominator matrix P(s) are', $ /20(I5)) 99989 FORMAT (/' The column degrees of the denominator matrix P(s) are', $ /20(I5)) 99988 FORMAT (/' The denominator matrix P(s) is ') 99987 FORMAT (/' The numerator matrix Q(s) is ') 99986 FORMAT (/' M is out of range.',/' M = ',I5) 99985 FORMAT (/' P is out of range.',/' P = ',I5) 99984 FORMAT (/' KDCOEF is out of range.',/' KDCOEF = ',I5) ENDProgram Data
TD01ND EXAMPLE PROGRAM DATA 2 2 0.0 R L N 3 3 1.0 6.0 11.0 6.0 1.0 6.0 11.0 6.0 1.0 6.0 12.0 7.0 0.0 1.0 4.0 3.0 0.0 0.0 1.0 1.0 1.0 8.0 20.0 15.0Program Results
TD03AD EXAMPLE PROGRAM RESULTS The order of the resulting minimal realization = 3 The state dynamics matrix A is 0.5000 0.9478 10.1036 0.0000 -1.0000 0.0000 -0.8660 -0.6156 -5.5000 The input/state matrix B is 2.0000 12.5000 0.0000 -5.6273 0.0000 -2.0207 The state/output matrix C is 0.0000 0.0296 -0.5774 0.0000 -0.1481 -0.5774 The direct transmission matrix D is 1.0000 0.0000 0.0000 1.0000 The observability index of the minimal realization = 2 The dimensions of the diagonal blocks of the state dynamics matrix are 2 1 The row degrees of the denominator matrix P(s) are 2 1 The denominator matrix P(s) is 1.6667 4.3333 6.6667 0.3333 5.6667 5.3333 5.6273 5.6273 0.0000 -5.6273 -5.6273 0.0000 The numerator matrix Q(s) is 1.6667 4.3333 8.6667 0.3333 8.0000 16.6667 5.6273 5.6273 0.0000 -5.6273 -11.2546 0.0000