Purpose
To evaluate the transfer matrix T(s) of a left polynomial matrix representation [T(s) = inv(P(s))*Q(s)] or a right polynomial matrix representation [T(s) = Q(s)*inv(P(s))] at any specified complex frequency s = SVAL. This routine will calculate the standard frequency response matrix at frequency omega if SVAL is supplied as (0.0,omega).Specification
SUBROUTINE TC05AD( LERI, M, P, SVAL, INDEX, PCOEFF, LDPCO1, $ LDPCO2, QCOEFF, LDQCO1, LDQCO2, RCOND, CFREQR, $ LDCFRE, IWORK, DWORK, ZWORK, INFO ) C .. Scalar Arguments .. CHARACTER LERI INTEGER INFO, LDCFRE, LDPCO1, LDPCO2, LDQCO1, LDQCO2, M, $ P DOUBLE PRECISION RCOND COMPLEX*16 SVAL C .. Array Arguments .. INTEGER INDEX(*), IWORK(*) DOUBLE PRECISION DWORK(*), PCOEFF(LDPCO1,LDPCO2,*), $ QCOEFF(LDQCO1,LDQCO2,*) COMPLEX*16 CFREQR(LDCFRE,*), ZWORK(*)Arguments
Mode Parameters
LERI CHARACTER*1 Indicates whether a left polynomial matrix representation or a right polynomial matrix representation is to be used to evaluate the transfer matrix as follows: = 'L': A left matrix fraction is input; = 'R': A right matrix fraction is input.Input/Output Parameters
M (input) INTEGER The number of system inputs. M >= 0. P (input) INTEGER The number of system outputs. P >= 0. SVAL (input) COMPLEX*16 The frequency at which the transfer matrix or the frequency respose matrix is to be evaluated. For a standard frequency response set the real part of SVAL to zero. INDEX (input) INTEGER array, dimension (MAX(M,P)) If LERI = 'L', INDEX(I), I = 1,2,...,P, must contain the maximum degree of the polynomials in the I-th row of the denominator matrix P(s) of the given left polynomial matrix representation. If LERI = 'R', INDEX(I), I = 1,2,...,M, must contain the maximum degree of the polynomials in the I-th column of the denominator matrix P(s) of the given right polynomial matrix representation. PCOEFF (input) DOUBLE PRECISION array, dimension (LDPCO1,LDPCO2,kpcoef), where kpcoef = MAX(INDEX(I)) + 1. If LERI = 'L' then porm = P, otherwise porm = M. The leading porm-by-porm-by-kpcoef part of this array must contain the coefficients of the denominator matrix P(s). PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1) of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if LERI = 'L' then iorj = I, otherwise iorj = J. Thus for LERI = 'L', P(s) = diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...). If LERI = 'R', PCOEFF is modified by the routine but restored on exit. LDPCO1 INTEGER The leading dimension of array PCOEFF. LDPCO1 >= MAX(1,P) if LERI = 'L', LDPCO1 >= MAX(1,M) if LERI = 'R'. LDPCO2 INTEGER The second dimension of array PCOEFF. LDPCO2 >= MAX(1,P) if LERI = 'L', LDPCO2 >= MAX(1,M) if LERI = 'R'. QCOEFF (input) DOUBLE PRECISION array, dimension (LDQCO1,LDQCO2,kpcoef) If LERI = 'L' then porp = M, otherwise porp = P. The leading porm-by-porp-by-kpcoef part of this array must contain the coefficients of the numerator matrix Q(s). QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K). If LERI = 'R', QCOEFF is modified by the routine but restored on exit. LDQCO1 INTEGER The leading dimension of array QCOEFF. LDQCO1 >= MAX(1,P) if LERI = 'L', LDQCO1 >= MAX(1,M,P) if LERI = 'R'. LDQCO2 INTEGER The second dimension of array QCOEFF. LDQCO2 >= MAX(1,M) if LERI = 'L', LDQCO2 >= MAX(1,M,P) if LERI = 'R'. RCOND (output) DOUBLE PRECISION The estimated reciprocal of the condition number of the denominator matrix P(SVAL). If RCOND is nearly zero, SVAL is approximately a system pole. CFREQR (output) COMPLEX*16 array, dimension (LDCFRE,MAX(M,P)) The leading porm-by-porp part of this array contains the frequency response matrix T(SVAL). LDCFRE INTEGER The leading dimension of array CFREQR. LDCFRE >= MAX(1,P) if LERI = 'L', LDCFRE >= MAX(1,M,P) if LERI = 'R'.Workspace
IWORK INTEGER array, dimension (liwork) where liwork = P, if LERI = 'L', liwork = M, if LERI = 'R'. DWORK DOUBLE PRECISION array, dimension (ldwork) where ldwork = 2*P, if LERI = 'L', ldwork = 2*M, if LERI = 'R'. ZWORK COMPLEX*16 array, dimension (lzwork), where lzwork = P*(P+2), if LERI = 'L', lzwork = M*(M+2), if LERI = 'R'.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: if P(SVAL) is exactly or nearly singular; no frequency response is calculated.Method
The method for a left matrix fraction will be described here; right matrix fractions are dealt with by obtaining the dual left fraction and calculating its frequency response (see SLICOT Library routine TC01OD). The first step is to calculate the complex value P(SVAL) of the denominator matrix P(s) at the desired frequency SVAL. If P(SVAL) is approximately singular, SVAL is approximately a pole of this system and so the frequency response matrix T(SVAL) is not calculated; in this case, the routine returns with the Error Indicator (INFO) set to 1. Otherwise, the complex value Q(SVAL) of the numerator matrix Q(s) at frequency SVAL is calculated in a similar way to P(SVAL), and the desired response matrix T(SVAL) = inv(P(SVAL))*Q(SVAL) is found by solving the corresponding system of complex linear equations.References
NoneNumerical Aspects
3 The algorithm requires 0(N ) operations.Further Comments
NoneExample
Program Text
* TC05AD EXAMPLE PROGRAM TEXT. * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER MMAX, PMAX, KPCMAX PARAMETER ( MMAX = 20, PMAX = 20, KPCMAX = 20 ) INTEGER MAXMP PARAMETER ( MAXMP = MAX( MMAX, PMAX ) ) INTEGER LDCFRE, LDPCO1, LDPCO2, LDQCO1, LDQCO2 PARAMETER ( LDCFRE = MAXMP, LDPCO1 = MAXMP, $ LDPCO2 = MAXMP, LDQCO1 = MAXMP, $ LDQCO2 = MAXMP ) INTEGER LDWORK PARAMETER ( LDWORK = 2*MAXMP ) INTEGER LZWORK PARAMETER ( LZWORK = ( MAXMP )*( MAXMP+2 ) ) * .. Local Scalars .. COMPLEX*16 SVAL DOUBLE PRECISION RCOND INTEGER I, INFO, J, K, KPCOEF, M, P, PORM, PORP CHARACTER*1 LERI LOGICAL LLERI * .. Local Arrays .. COMPLEX*16 CFREQR(LDCFRE,MAXMP), ZWORK(LZWORK) DOUBLE PRECISION DWORK(LDWORK), PCOEFF(LDPCO1,LDPCO2,KPCMAX), $ QCOEFF(LDQCO1,LDQCO2,KPCMAX) INTEGER INDEX(MAXMP), IWORK(MAXMP) * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL TC05AD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) M, P, SVAL, LERI LLERI = LSAME( LERI, 'L' ) IF ( M.LE.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99995 ) M ELSE IF ( P.LE.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99994 ) P ELSE PORM = P IF ( .NOT.LLERI ) PORM = M READ ( NIN, FMT = * ) ( INDEX(I), I = 1,PORM ) PORP = M IF ( .NOT.LLERI ) PORP = P KPCOEF = 0 DO 20 I = 1, PORM KPCOEF = MAX( KPCOEF, INDEX(I) ) 20 CONTINUE KPCOEF = KPCOEF + 1 IF ( KPCOEF.LE.0 .OR. KPCOEF.GT.KPCMAX ) THEN WRITE ( NOUT, FMT = 99993 ) KPCOEF ELSE READ ( NIN, FMT = * ) $ ( ( ( PCOEFF(I,J,K), K = 1,KPCOEF ), J = 1,PORM ), $ I = 1,PORM ) READ ( NIN, FMT = * ) $ ( ( ( QCOEFF(I,J,K), K = 1,KPCOEF ), J = 1,PORP ), $ I = 1,PORM ) * Find the standard frequency response matrix of left pmr * at 0.5*j. CALL TC05AD( LERI, M, P, SVAL, INDEX, PCOEFF, LDPCO1, $ LDPCO2, QCOEFF, LDQCO1, LDQCO2, RCOND, CFREQR, $ LDCFRE, IWORK, DWORK, ZWORK, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) RCOND DO 40 I = 1, PORM WRITE ( NOUT, FMT = 99996 ) $ ( CFREQR(I,J), J = 1,PORP ) 40 CONTINUE END IF END IF END IF STOP * 99999 FORMAT (' TC05AD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from TC05AD = ',I2) 99997 FORMAT (' RCOND = ',F4.2,//' The frequency response matrix T(SVA', $ 'L) is ') 99996 FORMAT (20(' (',F5.2,',',F5.2,') ',:)) 99995 FORMAT (/' M is out of range.',/' M = ',I5) 99994 FORMAT (/' P is out of range.',/' P = ',I5) 99993 FORMAT (/' KPCOEF is out of range.',/' KPCOEF = ',I5) ENDProgram Data
TC05AD EXAMPLE PROGRAM DATA 2 2 (0.0,0.5) L 2 2 2.0 3.0 1.0 4.0 -1.0 -1.0 5.0 7.0 -6.0 3.0 2.0 2.0 6.0 -1.0 5.0 1.0 7.0 5.0 1.0 1.0 1.0 4.0 1.0 -1.0Program Results
TC05AD EXAMPLE PROGRAM RESULTS RCOND = 0.19 The frequency response matrix T(SVAL) is (-0.25,-0.33) ( 0.26,-0.45) (-1.48, 0.35) (-2.25,-1.11)