Purpose
To find the dual right (left) polynomial matrix representation of a given left (right) polynomial matrix representation, where the right and left polynomial matrix representations are of the form Q(s)*inv(P(s)) and inv(P(s))*Q(s) respectively.Specification
SUBROUTINE TC01OD( LERI, M, P, INDLIM, PCOEFF, LDPCO1, LDPCO2, $ QCOEFF, LDQCO1, LDQCO2, INFO ) C .. Scalar Arguments .. CHARACTER LERI INTEGER INFO, INDLIM, LDPCO1, LDPCO2, LDQCO1, LDQCO2, M, $ P C .. Array Arguments .. DOUBLE PRECISION PCOEFF(LDPCO1,LDPCO2,*), QCOEFF(LDQCO1,LDQCO2,*)Arguments
Mode Parameters
LERI CHARACTER*1 Indicates whether a left or right matrix fraction is input as follows: = 'L': A left matrix fraction is input; = 'R': A right matrix fraction is input.Input/Output Parameters
M (input) INTEGER The number of system inputs. M >= 0. P (input) INTEGER The number of system outputs. P >= 0. INDLIM (input) INTEGER The highest value of K for which PCOEFF(.,.,K) and QCOEFF(.,.,K) are to be transposed. K = kpcoef + 1, where kpcoef is the maximum degree of the polynomials in P(s). INDLIM >= 1. PCOEFF (input/output) DOUBLE PRECISION array, dimension (LDPCO1,LDPCO2,INDLIM) If LERI = 'L' then porm = P, otherwise porm = M. On entry, the leading porm-by-porm-by-INDLIM part of this array must contain the coefficients of the denominator matrix P(s). PCOEFF(I,J,K) is the coefficient in s**(INDLIM-K) of polynomial (I,J) of P(s), where K = 1,2,...,INDLIM. On exit, the leading porm-by-porm-by-INDLIM part of this array contains the coefficients of the denominator matrix P'(s) of the dual system. LDPCO1 INTEGER The leading dimension of array PCOEFF. LDPCO1 >= MAX(1,P) if LERI = 'L', LDPCO1 >= MAX(1,M) if LERI = 'R'. LDPCO2 INTEGER The second dimension of array PCOEFF. LDPCO2 >= MAX(1,P) if LERI = 'L', LDPCO2 >= MAX(1,M) if LERI = 'R'. QCOEFF (input/output) DOUBLE PRECISION array, dimension (LDQCO1,LDQCO2,INDLIM) On entry, the leading P-by-M-by-INDLIM part of this array must contain the coefficients of the numerator matrix Q(s). QCOEFF(I,J,K) is the coefficient in s**(INDLIM-K) of polynomial (I,J) of Q(s), where K = 1,2,...,INDLIM. On exit, the leading M-by-P-by-INDLIM part of the array contains the coefficients of the numerator matrix Q'(s) of the dual system. LDQCO1 INTEGER The leading dimension of array QCOEFF. LDQCO1 >= MAX(1,M,P). LDQCO2 INTEGER The second dimension of array QCOEFF. LDQCO2 >= MAX(1,M,P).Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
If the given M-input/P-output left (right) polynomial matrix representation has numerator matrix Q(s) and denominator matrix P(s), its dual P-input/M-output right (left) polynomial matrix representation simply has numerator matrix Q'(s) and denominator matrix P'(s).References
None.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* TC01OD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER MMAX, PMAX, INDMAX PARAMETER ( MMAX = 20, PMAX = 20, INDMAX = 20 ) INTEGER MAXMP PARAMETER ( MAXMP = MAX( MMAX, PMAX ) ) INTEGER LDPCO1, LDPCO2, LDQCO1, LDQCO2 PARAMETER ( LDPCO1 = MAXMP, LDPCO2 = MAXMP, $ LDQCO1 = MAXMP, LDQCO2 = MAXMP ) * .. Local Scalars .. INTEGER I, INDLIM, INFO, J, K, M, P, PORM CHARACTER*1 LERI LOGICAL LLERI * .. Local Arrays .. DOUBLE PRECISION PCOEFF(LDPCO1,LDPCO2,INDMAX), $ QCOEFF(LDQCO1,LDQCO2,INDMAX) * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL TC01OD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) M, P, INDLIM, LERI LLERI = LSAME( LERI, 'L' ) IF ( M.LE.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99994 ) M ELSE IF ( P.LE.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99993 ) P ELSE IF ( INDLIM.LE.0 .OR. INDLIM.GT.INDMAX ) THEN WRITE ( NOUT, FMT = 99992 ) INDLIM ELSE PORM = P IF ( .NOT.LLERI ) PORM = M READ ( NIN, FMT = * ) $ ( ( ( PCOEFF(I,J,K), K = 1,INDLIM ), J = 1,PORM ), $ I = 1,PORM ) READ ( NIN, FMT = * ) $ ( ( ( QCOEFF(I,J,K), K = 1,INDLIM ), J = 1,M ), I = 1,P ) * Find the dual right pmr of the given left pmr. CALL TC01OD( LERI, M, P, INDLIM, PCOEFF, LDPCO1, LDPCO2, $ QCOEFF, LDQCO1, LDQCO2, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DO 40 I = 1, PORM DO 20 J = 1, PORM WRITE ( NOUT, FMT = 99996 ) I, J, $ ( PCOEFF(I,J,K), K = 1,INDLIM ) 20 CONTINUE 40 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 80 I = 1, M DO 60 J = 1, P WRITE ( NOUT, FMT = 99996 ) I, J, $ ( QCOEFF(I,J,K), K = 1,INDLIM ) 60 CONTINUE 80 CONTINUE END IF END IF STOP * 99999 FORMAT (' TC01OD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from TC01OD = ',I2) 99997 FORMAT (' The coefficients of the denominator matrix of the dual', $ ' system are ') 99996 FORMAT (/' element (',I2,',',I2,') is ',20(1X,F6.2)) 99995 FORMAT (//' The coefficients of the numerator matrix of the dual', $ ' system are ') 99994 FORMAT (/' M is out of range.',/' M = ',I5) 99993 FORMAT (/' P is out of range.',/' P = ',I5) 99992 FORMAT (/' INDLIM is out of range.',/' INDLIM = ',I5) ENDProgram Data
TC01OD EXAMPLE PROGRAM DATA 2 2 3 L 2.0 3.0 1.0 4.0 -1.0 -1.0 5.0 7.0 -6.0 3.0 2.0 2.0 6.0 -1.0 5.0 1.0 7.0 5.0 1.0 1.0 1.0 4.0 1.0 -1.0Program Results
TC01OD EXAMPLE PROGRAM RESULTS The coefficients of the denominator matrix of the dual system are element ( 1, 1) is 2.00 3.00 1.00 element ( 1, 2) is 5.00 7.00 -6.00 element ( 2, 1) is 4.00 -1.00 -1.00 element ( 2, 2) is 3.00 2.00 2.00 The coefficients of the numerator matrix of the dual system are element ( 1, 1) is 6.00 -1.00 5.00 element ( 1, 2) is 1.00 1.00 1.00 element ( 2, 1) is 1.00 7.00 5.00 element ( 2, 2) is 4.00 1.00 -1.00