TB04CD

Pole-zero-gain representation for a given state-space representation

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the transfer function matrix G of a state-space
  representation (A,B,C,D) of a linear time-invariant multivariable
  system, using the pole-zeros method. The transfer function matrix
  is returned in a minimal pole-zero-gain form.

Specification
      SUBROUTINE TB04CD( JOBD, EQUIL, N, M, P, NPZ, A, LDA, B, LDB, C,
     $                   LDC, D, LDD, NZ, LDNZ, NP, LDNP, ZEROSR,
     $                   ZEROSI, POLESR, POLESI, GAINS, LDGAIN, TOL,
     $                   IWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          EQUIL, JOBD
      DOUBLE PRECISION   TOL
      INTEGER            INFO, LDA, LDB, LDC, LDD, LDGAIN, LDNP, LDNZ,
     $                   LDWORK, M, N, NPZ, P
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                   DWORK(*), GAINS(LDGAIN,*), POLESI(*),
     $                   POLESR(*), ZEROSI(*), ZEROSR(*)
      INTEGER            IWORK(*), NP(LDNP,*), NZ(LDNZ,*)

Arguments

Mode Parameters

  JOBD    CHARACTER*1
          Specifies whether or not a non-zero matrix D appears in
          the given state-space model:
          = 'D':  D is present;
          = 'Z':  D is assumed to be a zero matrix.

  EQUIL   CHARACTER*1
          Specifies whether the user wishes to preliminarily
          equilibrate the triplet (A,B,C) as follows:
          = 'S':  perform equilibration (scaling);
          = 'N':  do not perform equilibration.

Input/Output Parameters
  N       (input) INTEGER
          The order of the system (A,B,C,D).  N >= 0.

  M       (input) INTEGER
          The number of the system inputs.  M >= 0.

  P       (input) INTEGER
          The number of the system outputs.  P >= 0.

  NPZ     (input) INTEGER
          The maximum number of poles or zeros of the single-input
          single-output channels in the system. An upper bound
          for NPZ is N.  NPZ >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the original state dynamics matrix A.
          On exit, if EQUIL = 'S', the leading N-by-N part of this
          array contains the balanced matrix inv(S)*A*S, as returned
          by SLICOT Library routine TB01ID.
          If EQUIL = 'N', this array is unchanged on exit.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input matrix B.
          On exit, the contents of B are destroyed: all elements but
          those in the first row are set to zero.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the output matrix C.
          On exit, if EQUIL = 'S', the leading P-by-N part of this
          array contains the balanced matrix C*S, as returned by
          SLICOT Library routine TB01ID.
          If EQUIL = 'N', this array is unchanged on exit.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,P).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          If JOBD = 'D', the leading P-by-M part of this array must
          contain the matrix D.
          If JOBD = 'Z', the array D is not referenced.

  LDD     INTEGER
          The leading dimension of array D.
          LDD >= MAX(1,P), if JOBD = 'D';
          LDD >= 1,        if JOBD = 'Z'.

  NZ      (output) INTEGER array, dimension (LDNZ,M)
          The leading P-by-M part of this array contains the numbers
          of zeros of the elements of the transfer function
          matrix G. Specifically, the (i,j) element of NZ contains
          the number of zeros of the transfer function G(i,j) from
          the j-th input to the i-th output.

  LDNZ    INTEGER
          The leading dimension of array NZ.  LDNZ >= max(1,P).

  NP      (output) INTEGER array, dimension (LDNP,M)
          The leading P-by-M part of this array contains the numbers
          of poles of the elements of the transfer function
          matrix G. Specifically, the (i,j) element of NP contains
          the number of poles of the transfer function G(i,j).

  LDNP    INTEGER
          The leading dimension of array NP.  LDNP >= max(1,P).

  ZEROSR  (output) DOUBLE PRECISION array, dimension (P*M*NPZ)
          This array contains the real parts of the zeros of the
          transfer function matrix G. The real parts of the zeros
          are stored in a column-wise order, i.e., for the transfer
          functions (1,1), (2,1), ..., (P,1), (1,2), (2,2), ...,
          (P,2), ..., (1,M), (2,M), ..., (P,M); NPZ memory locations
          are reserved for each transfer function, hence, the real
          parts of the zeros for the (i,j) transfer function
          are stored starting from the location ((j-1)*P+i-1)*NPZ+1.
          Pairs of complex conjugate zeros are stored in consecutive
          memory locations. Note that only the first NZ(i,j) entries
          are initialized for the (i,j) transfer function.

  ZEROSI  (output) DOUBLE PRECISION array, dimension (P*M*NPZ)
          This array contains the imaginary parts of the zeros of
          the transfer function matrix G, stored in a similar way
          as the real parts of the zeros.

  POLESR  (output) DOUBLE PRECISION array, dimension (P*M*NPZ)
          This array contains the real parts of the poles of the
          transfer function matrix G, stored in the same way as
          the zeros. Note that only the first NP(i,j) entries are
          initialized for the (i,j) transfer function.

  POLESI  (output) DOUBLE PRECISION array, dimension (P*M*NPZ)
          This array contains the imaginary parts of the poles of
          the transfer function matrix G, stored in the same way as
          the poles.

  GAINS   (output) DOUBLE PRECISION array, dimension (LDGAIN,M)
          The leading P-by-M part of this array contains the gains
          of the transfer function matrix G. Specifically,
          GAINS(i,j) contains the gain of the transfer function
          G(i,j).

  LDGAIN  INTEGER
          The leading dimension of array GAINS.  LDGAIN >= max(1,P).

Tolerances
  TOL     DOUBLE PRECISION
          The tolerance to be used in determining the
          controllability of a single-input system (A,b) or (A',c'),
          where b and c' are columns in B and C' (C transposed). If
          the user sets TOL > 0, then the given value of TOL is used
          as an absolute tolerance; elements with absolute value
          less than TOL are considered neglijible. If the user sets
          TOL <= 0, then an implicitly computed, default tolerance,
          defined by TOLDEF = N*EPS*MAX( NORM(A), NORM(bc) ) is used
          instead, where EPS is the machine precision (see LAPACK
          Library routine DLAMCH), and bc denotes the currently used
          column in B or C' (see METHOD).

Workspace
  IWORK   INTEGER array, dimension (N)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK >= MAX(1, N*(N+P) +
                           MAX( N + MAX( N,P ), N*(2*N+3)))
          If N >= P, N >= 1, the formula above can be written as
          LDWORK >= N*(3*N + P + 3).
          For optimum performance LDWORK should be larger.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the QR algorithm failed to converge when trying to
                compute the zeros of a transfer function;
          = 2:  the QR algorithm failed to converge when trying to
                compute the poles of a transfer function.
                The errors INFO = 1 or 2 are unlikely to appear.

Method
  The routine implements the pole-zero method proposed in [1].
  This method is based on an algorithm for computing the transfer
  function of a single-input single-output (SISO) system.
  Let (A,b,c,d) be a SISO system. Its transfer function is computed
  as follows:

  1) Find a controllable realization (Ac,bc,cc) of (A,b,c).
  2) Find an observable realization (Ao,bo,co) of (Ac,bc,cc).
  3) Compute the r eigenvalues of Ao (the poles of (Ao,bo,co)).
  4) Compute the zeros of (Ao,bo,co,d).
  5) Compute the gain of (Ao,bo,co,d).

  This algorithm can be implemented using only orthogonal
  transformations [1]. However, for better efficiency, the
  implementation in TB04CD uses one elementary transformation
  in Step 4 and r elementary transformations in Step 5 (to reduce
  an upper Hessenberg matrix to upper triangular form). These
  special elementary transformations are numerically stable
  in practice.

  In the multi-input multi-output (MIMO) case, the algorithm
  computes each element (i,j) of the transfer function matrix G,
  for i = 1 : P, and for j = 1 : M. For efficiency reasons, Step 1
  is performed once for each value of j (each column of B). The
  matrices Ac and Ao result in Hessenberg form.

References
  [1] Varga, A. and Sima, V.
      Numerically Stable Algorithm for Transfer Function Matrix
      Evaluation.
      Int. J. Control, vol. 33, nr. 6, pp. 1123-1133, 1981.

Numerical Aspects
  The algorithm is numerically stable in practice and requires about
  20*N**3 floating point operations at most, but usually much less.

Further Comments
  None
Example

Program Text

*     TB04CD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX, NPZMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20,
     $                   NPZMAX = NMAX )
      INTEGER          PMNMAX
      PARAMETER        ( PMNMAX = PMAX*MMAX*NPZMAX )
      INTEGER          LDA, LDB, LDC, LDD, LDGAIN, LDNP, LDNZ
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDD = PMAX, LDGAIN = PMAX, LDNP = PMAX,
     $                   LDNZ = PMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = NMAX*( NMAX + PMAX ) +
     $                            MAX( NMAX + MAX( NMAX, PMAX ),
     $                                 NMAX*( 2*NMAX + 3 ) ) )
*     .. Local Scalars ..
      DOUBLE PRECISION TOL
      INTEGER          I, IJ, INFO, J, K, M, N, NPZ, P
      CHARACTER*1      JOBD, EQUIL
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 D(LDD,MMAX), DWORK(LDWORK), GAINS(LDGAIN,MMAX),
     $                 POLESI(PMNMAX), POLESR(PMNMAX), ZEROSI(PMNMAX),
     $                 ZEROSR(PMNMAX)
      INTEGER          IWORK(LIWORK), NP(LDNP,MMAX), NZ(LDNZ,MMAX)
*     .. External Subroutines ..
      EXTERNAL         TB04CD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, TOL, JOBD, EQUIL
      NPZ = N
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99992 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99991 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), I = 1,N ), J = 1,M )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99990 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
               READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
*              Find the transfer matrix T(s) of (A,B,C,D) in the
*              pole-zero-gain form.
               CALL TB04CD( JOBD, EQUIL, N, M, P, NPZ, A, LDA, B, LDB,
     $                      C, LDC, D, LDD, NZ, LDNZ, NP, LDNP, ZEROSR,
     $                      ZEROSI, POLESR, POLESI, GAINS, LDGAIN, TOL,
     $                      IWORK, DWORK, LDWORK, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 )
                  DO 60 J = 1, M
                     DO 40 I = 1, P
                        IJ = ( (J-1)*P + I-1 )*NPZ + 1
                        IF ( NZ(I,J).EQ.0 ) THEN
                           WRITE ( NOUT, FMT = 99996 ) I, J
                        ELSE
                           WRITE ( NOUT, FMT = 99995 ) I, J,
     $                        ( ZEROSR(K), ZEROSI(K),
     $                                 K = IJ,IJ+NZ(I,J)-1 )
                        END IF
                        WRITE ( NOUT, FMT = 99994 ) I, J,
     $                     ( POLESR(K), POLESI(K), K = IJ,IJ+NP(I,J)-1 )
                        WRITE ( NOUT, FMT = 99993 ) I, J, ( GAINS(I,J) )
   40                CONTINUE
   60             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TB04CD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TB04CD = ',I2)
99997 FORMAT (/' The poles, zeros and gains of the transfer matrix',
     $         ' elements: ')
99996 FORMAT (/' no zeros for element (',I2,',',I2,')')
99995 FORMAT (/' zeros of element (',I2,',',I2,') are ',//
     $         '   real part     imag part '// (2X,F9.4,5X,F9.4))
99994 FORMAT (/' poles of element (',I2,',',I2,') are ',//
     $         '   real part     imag part '// (2X,F9.4,5X,F9.4))
99993 FORMAT (/' gain of element (',I2,',',I2,') is ', F9.4)
99992 FORMAT (/' N is out of range.',/' N = ',I5)
99991 FORMAT (/' M is out of range.',/' M = ',I5)
99990 FORMAT (/' P is out of range.',/' P = ',I5)
      END
Program Data
 TB04CD EXAMPLE PROGRAM DATA
   3     2     2  0.0         D     N
  -1.0   0.0   0.0
   0.0  -2.0   0.0
   0.0   0.0  -3.0
   0.0   1.0  -1.0
   1.0   1.0   0.0
   0.0   1.0   1.0
   1.0   1.0   1.0
   1.0   0.0
   0.0   1.0
Program Results
 TB04CD EXAMPLE PROGRAM RESULTS


 The poles, zeros and gains of the transfer matrix elements: 

 zeros of element ( 1, 1) are 

   real part     imag part 

    -2.5000        0.8660
    -2.5000       -0.8660

 poles of element ( 1, 1) are 

   real part     imag part 

    -2.0000        0.0000
    -3.0000        0.0000

 gain of element ( 1, 1) is    1.0000

 no zeros for element ( 2, 1)

 poles of element ( 2, 1) are 

   real part     imag part 

    -2.0000        0.0000
    -3.0000        0.0000

 gain of element ( 2, 1) is    1.0000

 no zeros for element ( 1, 2)

 poles of element ( 1, 2) are 

   real part     imag part 

    -2.0000        0.0000

 gain of element ( 1, 2) is    1.0000

 zeros of element ( 2, 2) are 

   real part     imag part 

    -3.6180        0.0000
    -1.3820        0.0000

 poles of element ( 2, 2) are 

   real part     imag part 

    -1.0000        0.0000
    -2.0000        0.0000

 gain of element ( 2, 2) is    1.0000

Return to index