Purpose
To find a relatively prime left polynomial matrix representation inv(P(s))*Q(s) or right polynomial matrix representation Q(s)*inv(P(s)) with the same transfer matrix T(s) as that of a given state-space representation, i.e. inv(P(s))*Q(s) = Q(s)*inv(P(s)) = T(s) = C*inv(s*I-A)*B + D.Specification
SUBROUTINE TB03AD( LERI, EQUIL, N, M, P, A, LDA, B, LDB, C, LDC, $ D, LDD, NR, INDEX, PCOEFF, LDPCO1, LDPCO2, $ QCOEFF, LDQCO1, LDQCO2, VCOEFF, LDVCO1, LDVCO2, $ TOL, IWORK, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER EQUIL, LERI INTEGER INFO, LDA, LDB, LDC, LDD, LDPCO1, LDPCO2, $ LDQCO1, LDQCO2, LDVCO1, LDVCO2, LDWORK, M, N, $ NR, P DOUBLE PRECISION TOL C .. Array Arguments .. INTEGER INDEX(*), IWORK(*) DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), $ DWORK(*), PCOEFF(LDPCO1,LDPCO2,*), $ QCOEFF(LDQCO1,LDQCO2,*), VCOEFF(LDVCO1,LDVCO2,*)Arguments
Mode Parameters
LERI CHARACTER*1 Indicates whether the left polynomial matrix representation or the right polynomial matrix representation is required as follows: = 'L': A left matrix fraction is required; = 'R': A right matrix fraction is required. EQUIL CHARACTER*1 Specifies whether the user wishes to balance the triplet (A,B,C), before computing a minimal state-space representation, as follows: = 'S': Perform balancing (scaling); = 'N': Do not perform balancing.Input/Output Parameters
N (input) INTEGER The order of the state-space representation, i.e. the order of the original state dynamics matrix A. N >= 0. M (input) INTEGER The number of system inputs. M >= 0. P (input) INTEGER The number of system outputs. P >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the original state dynamics matrix A. On exit, the leading NR-by-NR part of this array contains the upper block Hessenberg state dynamics matrix Amin of a minimal realization for the original system. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,MAX(M,P)) On entry, the leading N-by-M part of this array must contain the original input/state matrix B; the remainder of the leading N-by-MAX(M,P) part is used as internal workspace. On exit, the leading NR-by-M part of this array contains the transformed input/state matrix Bmin. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,N). C (input/output) DOUBLE PRECISION array, dimension (LDC,N) On entry, the leading P-by-N part of this array must contain the original state/output matrix C; the remainder of the leading MAX(M,P)-by-N part is used as internal workspace. On exit, the leading P-by-NR part of this array contains the transformed state/output matrix Cmin. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,M,P). D (input) DOUBLE PRECISION array, dimension (LDD,MAX(M,P)) The leading P-by-M part of this array must contain the original direct transmission matrix D; the remainder of the leading MAX(M,P)-by-MAX(M,P) part is used as internal workspace. LDD INTEGER The leading dimension of array D. LDD >= MAX(1,M,P). NR (output) INTEGER The order of the minimal state-space representation (Amin,Bmin,Cmin). INDEX (output) INTEGER array, dimension (P), if LERI = 'L', or dimension (M), if LERI = 'R'. If LERI = 'L', INDEX(I), I = 1,2,...,P, contains the maximum degree of the polynomials in the I-th row of the denominator matrix P(s) of the left polynomial matrix representation. These elements are ordered so that INDEX(1) >= INDEX(2) >= ... >= INDEX(P). If LERI = 'R', INDEX(I), I = 1,2,...,M, contains the maximum degree of the polynomials in the I-th column of the denominator matrix P(s) of the right polynomial matrix representation. These elements are ordered so that INDEX(1) >= INDEX(2) >= ... >= INDEX(M). PCOEFF (output) DOUBLE PRECISION array, dimension (LDPCO1,LDPCO2,N+1) If LERI = 'L' then porm = P, otherwise porm = M. The leading porm-by-porm-by-kpcoef part of this array contains the coefficients of the denominator matrix P(s), where kpcoef = MAX(INDEX(I)) + 1. PCOEFF(I,J,K) is the coefficient in s**(INDEX(iorj)-K+1) of polynomial (I,J) of P(s), where K = 1,2,...,kpcoef; if LERI = 'L' then iorj = I, otherwise iorj = J. Thus for LERI = 'L', P(s) = diag(s**INDEX(I))*(PCOEFF(.,.,1)+PCOEFF(.,.,2)/s+...). LDPCO1 INTEGER The leading dimension of array PCOEFF. LDPCO1 >= MAX(1,P), if LERI = 'L'; LDPCO1 >= MAX(1,M), if LERI = 'R'. LDPCO2 INTEGER The second dimension of array PCOEFF. LDPCO2 >= MAX(1,P), if LERI = 'L'; LDPCO2 >= MAX(1,M), if LERI = 'R'. QCOEFF (output) DOUBLE PRECISION array, dimension (LDQCO1,LDQCO2,N+1) If LERI = 'L' then porp = M, otherwise porp = P. If LERI = 'L', the leading porm-by-porp-by-kpcoef part of this array contains the coefficients of the numerator matrix Q(s). If LERI = 'R', the leading porp-by-porm-by-kpcoef part of this array contains the coefficients of the numerator matrix Q(s). QCOEFF(I,J,K) is defined as for PCOEFF(I,J,K). LDQCO1 INTEGER The leading dimension of array QCOEFF. LDQCO1 >= MAX(1,P), if LERI = 'L'; LDQCO1 >= MAX(1,M,P), if LERI = 'R'. LDQCO2 INTEGER The second dimension of array QCOEFF. LDQCO2 >= MAX(1,M), if LERI = 'L'; LDQCO2 >= MAX(1,M,P), if LERI = 'R'. VCOEFF (output) DOUBLE PRECISION array, dimension (LDVCO1,LDVCO2,N+1) The leading porm-by-NR-by-kpcoef part of this array contains the coefficients of the intermediate matrix V(s). VCOEFF(I,J,K) is defined as for PCOEFF(I,J,K). LDVCO1 INTEGER The leading dimension of array VCOEFF. LDVCO1 >= MAX(1,P), if LERI = 'L'; LDVCO1 >= MAX(1,M), if LERI = 'R'. LDVCO2 INTEGER The second dimension of array VCOEFF. LDVCO2 >= MAX(1,N).Tolerances
TOL DOUBLE PRECISION The tolerance to be used in rank determination when transforming (A, B, C). If the user sets TOL > 0, then the given value of TOL is used as a lower bound for the reciprocal condition number (see the description of the argument RCOND in the SLICOT routine MB03OD); a (sub)matrix whose estimated condition number is less than 1/TOL is considered to be of full rank. If the user sets TOL <= 0, then an implicitly computed, default tolerance (determined by the SLICOT routine TB01UD) is used instead.Workspace
IWORK INTEGER array, dimension (N+MAX(M,P)) On exit, if INFO = 0, the first nonzero elements of IWORK(1:N) return the orders of the diagonal blocks of A. DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= MAX(1, N + MAX(N, 3*M, 3*P), PM*(PM + 2)) where PM = P, if LERI = 'L'; PM = M, if LERI = 'R'. For optimum performance LDWORK should be larger.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: if a singular matrix was encountered during the computation of V(s); = 2: if a singular matrix was encountered during the computation of P(s).Method
The method for a left matrix fraction will be described here: right matrix fractions are dealt with by constructing a left fraction for the dual of the original system. The first step is to obtain, by means of orthogonal similarity transformations, a minimal state-space representation (Amin,Bmin,Cmin,D) for the original system (A,B,C,D), where Amin is lower block Hessenberg with all its superdiagonal blocks upper triangular and Cmin has all but its first rank(C) columns zero. The number and dimensions of the blocks of Amin now immediately yield the row degrees of P(s) with P(s) row proper: furthermore, the P-by-NR polynomial matrix V(s) (playing a similar role to S(s) in Wolovich's Structure Theorem) can be calculated a column block at a time, in reverse order, from Amin. P(s) is then found as if it were the O-th column block of V(s) (using Cmin as well as Amin), while Q(s) = (V(s) * Bmin) + (P(s) * D). Finally, a special similarity transformation is used to put Amin in an upper block Hessenberg form.References
[1] Williams, T.W.C. An Orthogonal Structure Theorem for Linear Systems. Kingston Polytechnic Control Systems Research Group, Internal Report 82/2, July 1982. [2] Patel, R.V. On Computing Matrix Fraction Descriptions and Canonical Forms of Linear Time-Invariant Systems. UMIST Control Systems Centre Report 489, 1980. (Algorithms 1 and 2, extensively modified).Numerical Aspects
3 The algorithm requires 0(N ) operations.Further Comments
NoneExample
Program Text
* TB03AD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 ) INTEGER MAXMP PARAMETER ( MAXMP = MAX( MMAX, PMAX ) ) INTEGER LDA, LDB, LDC, LDD, LDPCO1, LDPCO2, LDQCO1, $ LDQCO2, LDVCO1, LDVCO2, NMAXP1 PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = MAXMP, $ LDD = MAXMP, LDPCO1 = MAXMP, LDPCO2 = MAXMP, $ LDQCO1 = MAXMP, LDQCO2 = MAXMP, LDVCO1 = MAXMP, $ LDVCO2 = NMAX, NMAXP1 = NMAX+1 ) INTEGER LIWORK PARAMETER ( LIWORK = NMAX + MAXMP ) INTEGER LDWORK PARAMETER ( LDWORK = MAX( NMAX + MAX( NMAX, 3*MAXMP ), $ MAXMP*( MAXMP + 2 ) ) ) * .. Local Scalars .. DOUBLE PRECISION TOL INTEGER I, INDBLK, INFO, J, K, KPCOEF, M, N, NR, P, PORM, $ PORP CHARACTER*1 EQUIL, LERI LOGICAL LLERI * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), B(LDB,MAXMP), C(LDC,NMAX), $ D(LDD,MAXMP), DWORK(LDWORK), $ PCOEFF(LDPCO1,LDPCO2,NMAXP1), $ QCOEFF(LDQCO1,LDQCO2,NMAXP1), $ VCOEFF(LDVCO1,LDVCO2,NMAXP1) INTEGER INDEX(MAXMP), IWORK(LIWORK) * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL TB03AD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, P, TOL, LERI, EQUIL LLERI = LSAME( LERI, 'L' ) IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99987 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99986 ) M ELSE READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N ) IF ( P.LT.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99985 ) P ELSE READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P ) * Find the right pmr which is equivalent to the ssr * C*inv(sI-A)*B+D. CALL TB03AD( LERI, EQUIL, N, M, P, A, LDA, B, LDB, C, $ LDC, D, LDD, NR, INDEX, PCOEFF, LDPCO1, $ LDPCO2, QCOEFF, LDQCO1, LDQCO2, VCOEFF, $ LDVCO1, LDVCO2, TOL, IWORK, DWORK, LDWORK, $ INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) NR DO 20 I = 1, NR WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,NR ) 20 CONTINUE INDBLK = 0 DO 40 I = 1, N IF ( IWORK(I).NE.0 ) INDBLK = INDBLK + 1 40 CONTINUE WRITE ( NOUT, FMT = 99995 ) ( IWORK(I), I = 1,INDBLK ) WRITE ( NOUT, FMT = 99994 ) DO 60 I = 1, NR WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,M ) 60 CONTINUE WRITE ( NOUT, FMT = 99993 ) DO 80 I = 1, P WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,NR ) 80 CONTINUE IF ( LLERI ) THEN PORM = P PORP = M WRITE ( NOUT, FMT = 99992 ) INDBLK ELSE PORM = M PORP = P WRITE ( NOUT, FMT = 99991 ) INDBLK END IF WRITE ( NOUT, FMT = 99990 ) ( INDEX(I), I = 1,PORM ) KPCOEF = 0 DO 100 I = 1, PORM KPCOEF = MAX( KPCOEF, INDEX(I) ) 100 CONTINUE KPCOEF = KPCOEF + 1 WRITE ( NOUT, FMT = 99989 ) DO 140 I = 1, PORM DO 120 J = 1, PORM WRITE ( NOUT, FMT = 99996 ) $ ( PCOEFF(I,J,K), K = 1,KPCOEF ) 120 CONTINUE 140 CONTINUE WRITE ( NOUT, FMT = 99988 ) IF ( LLERI ) THEN DO 180 I = 1, PORM DO 160 J = 1, PORP WRITE ( NOUT, FMT = 99996 ) $ ( QCOEFF(I,J,K), K = 1,KPCOEF ) 160 CONTINUE 180 CONTINUE ELSE DO 220 I = 1, PORP DO 200 J = 1, PORM WRITE ( NOUT, FMT = 99996 ) $ ( QCOEFF(I,J,K), K = 1,KPCOEF ) 200 CONTINUE 220 CONTINUE END IF END IF END IF END IF END IF STOP * 99999 FORMAT (' TB03AD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from TB03AD = ',I2) 99997 FORMAT (' The order of the minimal state-space representation = ', $ I2,//' The transformed state dynamics matrix of a minimal', $ ' realization is ') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' and the dimensions of its diagonal blocks are ',/20(I5) $ ) 99994 FORMAT (/' The transformed input/state matrix of a minimal reali', $ 'zation is ') 99993 FORMAT (/' The transformed state/output matrix of a minimal real', $ 'ization is ') 99992 FORMAT (/' The observability index of the transformed minimal sy', $ 'stem representation = ',I2) 99991 FORMAT (/' The controllability index of the transformed minimal ', $ 'system representation = ',I2) 99990 FORMAT (/' INDEX is ',/20(I5)) 99989 FORMAT (/' The denominator matrix P(s) is ') 99988 FORMAT (/' The numerator matrix Q(s) is ') 99987 FORMAT (/' N is out of range.',/' N = ',I5) 99986 FORMAT (/' M is out of range.',/' M = ',I5) 99985 FORMAT (/' P is out of range.',/' P = ',I5) ENDProgram Data
TB03AD EXAMPLE PROGRAM DATA 3 1 2 0.0 R N 1.0 2.0 0.0 4.0 -1.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 -1.0 0.0 0.0 1.0 0.0 1.0Program Results
TB03AD EXAMPLE PROGRAM RESULTS The order of the minimal state-space representation = 3 The transformed state dynamics matrix of a minimal realization is 1.0000 -1.4142 0.0000 -2.8284 -1.0000 2.8284 0.0000 1.4142 1.0000 and the dimensions of its diagonal blocks are 1 1 1 The transformed input/state matrix of a minimal realization is -1.4142 0.0000 0.0000 The transformed state/output matrix of a minimal realization is 0.7071 1.0000 0.7071 -0.7071 0.0000 -0.7071 The controllability index of the transformed minimal system representation = 3 INDEX is 3 The denominator matrix P(s) is 0.1768 -0.1768 -1.5910 1.5910 The numerator matrix Q(s) is 0.0000 -0.1768 0.7071 0.8839 0.1768 0.0000 -1.5910 0.0000