TB01WD

Orthogonal similarity transformation of system state-matrix to real Schur form

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To reduce the system state matrix A to an upper real Schur form
  by using an orthogonal similarity transformation A <-- U'*A*U and
  to apply the transformation to the matrices B and C: B <-- U'*B
  and C <-- C*U.

Specification
      SUBROUTINE TB01WD( N, M, P, A, LDA, B, LDB, C, LDC, U, LDU,
     $                   WR, WI, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER          INFO, LDA, LDB, LDC, LDU, LDWORK, M, N, P
C     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), U(LDU,*),
     $                 WI(*), WR(*)

Arguments

Input/Output Parameters

  N       (input) INTEGER
          The order of the original state-space representation,
          i.e. the order of the matrix A.  N >= 0.

  M       (input) INTEGER
          The number of system inputs, or of columns of B.  M >= 0.

  P       (input) INTEGER
          The number of system outputs, or of rows of C.  P >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the original state dynamics matrix A.
          On exit, the leading N-by-N part of this array contains
          the matrix U' * A * U in real Schur form. The elements
          below the first subdiagonal are set to zero.
          Note:  A matrix is in real Schur form if it is upper
                 quasi-triangular with 1-by-1 and 2-by-2 blocks.
                 2-by-2 blocks are standardized in the form
                          [  a  b  ]
                          [  c  a  ]
                 where b*c < 0. The eigenvalues of such a block
                 are a +- sqrt(bc).

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input matrix B.
          On exit, the leading N-by-M part of this array contains
          the transformed input matrix U' * B.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the output matrix C.
          On exit, the leading P-by-N part of this array contains
          the transformed output matrix C * U.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,P).

  U       (output) DOUBLE PRECISION array, dimension (LDU,N)
          The leading N-by-N part of this array contains the
          orthogonal transformation matrix used to reduce A to the
          real Schur form. The columns of U are the Schur vectors of
          matrix A.

  LDU     INTEGER
          The leading dimension of array U.  LDU >= max(1,N).

  WR, WI  (output) DOUBLE PRECISION arrays, dimension (N)
          WR and WI contain the real and imaginary parts,
          respectively, of the computed eigenvalues of A. The
          eigenvalues will be in the same order that they appear on
          the diagonal of the output real Schur form of A. Complex
          conjugate pairs of eigenvalues will appear consecutively
          with the eigenvalue having the positive imaginary part
          first.

Workspace
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of working array DWORK.  LWORK >= 3*N.
          For optimum performance LDWORK should be larger.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          > 0:  if INFO = i, the QR algorithm failed to compute
                all the eigenvalues; elements i+1:N of WR and WI
                contain those eigenvalues which have converged;
                U contains the matrix which reduces A to its
                partially converged Schur form.

Method
  Matrix A is reduced to a real Schur form using an orthogonal
  similarity transformation A <- U'*A*U. Then, the transformation
  is applied to the matrices B and C: B <-- U'*B and C <-- C*U.

Numerical Aspects
                                  3
  The algorithm requires about 10N  floating point operations.

Further Comments
  None
Example

Program Text

*     TB01WD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDU
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDU = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 3*NMAX )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, M, N, P
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), U(LDU,NMAX), WI(NMAX), WR(NMAX)
*     .. External Subroutines ..
      EXTERNAL         TB01WD
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99989 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99988 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
*              Find the transformed ssr for (A,B,C).
               CALL TB01WD( N, M, P, A, LDA, B, LDB, C, LDC, U, LDU,
     $                      WR, WI, DWORK, LDWORK, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 )
                  DO 10 I = 1, N
                     WRITE ( NOUT, FMT = 99994 ) WR(I), WI(I)
   10             CONTINUE
                  WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99993 )
                  DO 40 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   40             CONTINUE
                  WRITE ( NOUT, FMT = 99992 )
                  DO 60 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99991 )
                  DO 70 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( U(I,J), J = 1,N )
   70             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TB01WD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TB01WD = ',I2)
99997 FORMAT (' The eigenvalues of state dynamics matrix A are ')
99996 FORMAT (/' The transformed state dynamics matrix U''*A*U is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT ( ' (',F8.4,', ',F8.4,' )')
99993 FORMAT (/' The transformed input/state matrix U''*B is ')
99992 FORMAT (/' The transformed state/output matrix C*U is ')
99991 FORMAT (/' The similarity transformation matrix U is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
      END
Program Data
 TB01WD EXAMPLE PROGRAM DATA (Continuous system)
  5  2   3    
  -0.04165    4.9200   -4.9200         0         0
 -1.387944   -3.3300         0         0         0
    0.5450         0         0   -0.5450         0
         0         0    4.9200  -0.04165    4.9200
         0         0         0 -1.387944   -3.3300
         0         0
    3.3300         0
         0         0
         0         0
         0    3.3300
     1     0     0     0     0
     0     0     1     0     0
     0     0     0     1     0

Program Results
 TB01WD EXAMPLE PROGRAM RESULTS

 The eigenvalues of state dynamics matrix A are 
 ( -0.7483,   2.9940 )
 ( -0.7483,  -2.9940 )
 ( -1.6858,   2.0311 )
 ( -1.6858,  -2.0311 )
 ( -1.8751,   0.0000 )

 The transformed state dynamics matrix U'*A*U is 
  -0.7483  -8.6406   0.0000   0.0000   1.1745
   1.0374  -0.7483   0.0000   0.0000  -2.1164
   0.0000   0.0000  -1.6858   5.5669   0.0000
   0.0000   0.0000  -0.7411  -1.6858   0.0000
   0.0000   0.0000   0.0000   0.0000  -1.8751

 The transformed input/state matrix U'*B is 
  -0.5543   0.5543
  -1.6786   1.6786
  -0.8621  -0.8621
   2.1912   2.1912
  -1.5555   1.5555

 The transformed state/output matrix C*U is 
   0.6864  -0.0987   0.6580   0.2589  -0.1381
  -0.0471   0.6873   0.0000   0.0000  -0.7249
  -0.6864   0.0987   0.6580   0.2589   0.1381

 The similarity transformation matrix U is 
   0.6864  -0.0987   0.6580   0.2589  -0.1381
  -0.1665  -0.5041  -0.2589   0.6580  -0.4671
  -0.0471   0.6873   0.0000   0.0000  -0.7249
  -0.6864   0.0987   0.6580   0.2589   0.1381
   0.1665   0.5041  -0.2589   0.6580   0.4671

Return to index