TB01ND

Upper/lower observer Hessenberg form using unitary state-space transformations

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To reduce the pair (A,C) to lower or upper observer Hessenberg
  form using (and optionally accumulating) unitary state-space
  transformations.

Specification
      SUBROUTINE TB01ND( JOBU, UPLO, N, P, A, LDA, C, LDC, U, LDU,
     $                   DWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           INFO, LDA, LDC, LDU, N, P
      CHARACTER         JOBU, UPLO
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), C(LDC,*), DWORK(*), U(LDU,*)

Arguments

Mode Parameters

  JOBU    CHARACTER*1
          Indicates whether the user wishes to accumulate in a
          matrix U the unitary state-space transformations for
          reducing the system, as follows:
          = 'N':  Do not form U;
          = 'I':  U is initialized to the unit matrix and the
                  unitary transformation matrix U is returned;
          = 'U':  The given matrix U is updated by the unitary
                  transformations used in the reduction.

  UPLO    CHARACTER*1
          Indicates whether the user wishes the pair (A,C) to be
          reduced to upper or lower observer Hessenberg form as
          follows:
          = 'U':  Upper observer Hessenberg form;
          = 'L':  Lower observer Hessenberg form.

Input/Output Parameters
  N       (input) INTEGER
          The actual state dimension, i.e. the order of the
          matrix A.  N >= 0.

  P       (input) INTEGER
          The actual output dimension, i.e. the number of rows of
          the matrix C.  P >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state transition matrix A to be transformed.
          On exit, the leading N-by-N part of this array contains
          the transformed state transition matrix U' * A * U.
          The annihilated elements are set to zero.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the output matrix C to be transformed.
          On exit, the leading P-by-N part of this array contains
          the transformed output matrix C * U.
          The annihilated elements are set to zero.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,P).

  U       (input/output) DOUBLE PRECISION array, dimension (LDU,*)
          On entry, if JOBU = 'U', then the leading N-by-N part of
          this array must contain a given matrix U (e.g. from a
          previous call to another SLICOT routine), and on exit, the
          leading N-by-N part of this array contains the product of
          the input matrix U and the state-space transformation
          matrix which reduces the given pair to observer Hessenberg
          form.
          On exit, if JOBU = 'I', then the leading N-by-N part of
          this array contains the matrix of accumulated unitary
          similarity transformations which reduces the given pair
          to observer Hessenberg form.
          If JOBU = 'N', the array U is not referenced and can be
          supplied as a dummy array (i.e. set parameter LDU = 1 and
          declare this array to be U(1,1) in the calling program).

  LDU     INTEGER
          The leading dimension of array U. If JOBU = 'U' or
          JOBU = 'I', LDU >= MAX(1,N); if JOBU = 'N', LDU >= 1.

Workspace
  DWORK   DOUBLE PRECISION array, dimension (MAX(N,P-1))

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.

Method
  The routine computes a unitary state-space transformation U, which
  reduces the pair (A,C) to one of the following observer Hessenberg
  forms:

                             N
                    |*  . . . . . .  *|
                    |.               .|
                    |.               .|
                    |.               .| N
                    |*               .|
         |U'AU|     |   .            .|
         |----|  =  |     .          .|
         |CU  |     |       * . . .  *|
                    -------------------
                    |         * . .  *|
                    |           .    .| P
                    |             .  .|
                    |                *|

      if UPLO = 'U', or

                            N
                   |*                |
                   |.  .             |
                   |.    .           | P
                   |*  . . *         |
         |CU  |    -------------------
         |----|  = |*  . . . *       |
         |U'AU|    |.          .     |
                   |.            .   |
                   |.               *|
                   |.               .| N
                   |.               .|
                   |.               .|
                   |*  . . . . . .  *|

  if UPLO = 'L'.

  If P >= N, then the matrix CU is trapezoidal and U'AU is full.

References
  [1] Van Dooren, P. and Verhaegen, M.H.G.
      On the use of unitary state-space transformations.
      In : Contemporary Mathematics on Linear Algebra and its Role
      in Systems Theory, 47, AMS, Providence, 1985.

Numerical Aspects
  The algorithm requires O((N + P) x N**2) operations and is
  backward stable (see [1]).

Further Comments
  None
Example

Program Text

*     TB01ND EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, PMAX
      PARAMETER        ( NMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDC, LDU, LDWORK
      PARAMETER        ( LDA = NMAX, LDC = PMAX, LDU = NMAX,
     $                   LDWORK = NMAX )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, N, P
      CHARACTER*1      JOBU, UPLO
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), C(LDC,NMAX), U(LDU,NMAX),
     $                 DWORK(LDWORK)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         TB01ND
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, P, JOBU, UPLO
      IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), I = 1,N ), J = 1,N )
         IF ( P.LE.0 .OR. P.GT.PMAX ) THEN
            WRITE ( NOUT, FMT = 99992 ) P
         ELSE
            READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
            IF ( LSAME( JOBU, 'U' ) )
     $         READ ( NIN, FMT = * ) ( ( U(I,J), J = 1,N ), I = 1,N )
*           Reduce the pair (A,C) to observer Hessenberg form.
            CALL TB01ND( JOBU, UPLO, N, P, A, LDA, C, LDC, U, LDU,
     $                   DWORK, INFO )
*
            IF ( INFO.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99998 ) INFO
            ELSE
               WRITE ( NOUT, FMT = 99997 )
               DO 60 I = 1, N
                  WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
   60          CONTINUE
               WRITE ( NOUT, FMT = 99995 )
               DO 80 I = 1, P
                  WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,N )
   80          CONTINUE
               IF ( LSAME( JOBU, 'I' ).OR.LSAME( JOBU, 'U' ) ) THEN
                  WRITE ( NOUT, FMT = 99994 )
                  DO 100 I = 1, N
                     WRITE ( NOUT, FMT = 99996 ) ( U(I,J), J = 1,N )
  100             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TB01ND EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TB01ND = ',I2)
99997 FORMAT (' The transformed state transition matrix is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The transformed output matrix is ')
99994 FORMAT (/' The transformation matrix that reduces (A,C) to obser',
     $       'ver Hessenberg form is ')
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' P is out of range.',/' P = ',I5)
      END
Program Data
 TB01ND EXAMPLE PROGRAM DATA
   5     3     N     U
  15.0  21.0  -3.0   3.0   9.0
  20.0   1.0   2.0   8.0   9.0
   4.0   1.0   7.0  13.0  14.0
   5.0   6.0  12.0  13.0  -6.0
   5.0  11.0  17.0  -7.0  -1.0
   7.0  -1.0   3.0  -6.0  -3.0
   4.0   5.0   6.0  -2.0  -3.0
   9.0   8.0   5.0   2.0   1.0
Program Results
 TB01ND EXAMPLE PROGRAM RESULTS

 The transformed state transition matrix is 
   7.1637  -0.9691 -16.5046   0.2869   0.9205
  -2.3285  11.5431  -8.7471   3.4122  -3.7118
 -10.5440  -7.6032  -0.3215   3.6571  -0.4335
  -3.6845   5.6449   0.5906 -15.6996  17.4267
   0.0000  -6.4260   1.5591  14.4317  32.3143

 The transformed output matrix is 
   0.0000   0.0000   7.6585   5.2973  -4.1576
   0.0000   0.0000   0.0000   5.8305  -7.4837
   0.0000   0.0000   0.0000   0.0000 -13.2288

Return to index