TB01MD

Upper/lower controller Hessenberg form using unitary state-space transformations

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To reduce the pair (B,A) to upper or lower controller Hessenberg
  form using (and optionally accumulating) unitary state-space
  transformations.

Specification
      SUBROUTINE TB01MD( JOBU, UPLO, N, M, A, LDA, B, LDB, U, LDU,
     $                   DWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         JOBU, UPLO
      INTEGER           INFO, LDA, LDB, LDU, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), DWORK(*), U(LDU,*)

Arguments

Mode Parameters

  JOBU    CHARACTER*1
          Indicates whether the user wishes to accumulate in a
          matrix U the unitary state-space transformations for
          reducing the system, as follows:
          = 'N':  Do not form U;
          = 'I':  U is initialized to the unit matrix and the
                  unitary transformation matrix U is returned;
          = 'U':  The given matrix U is updated by the unitary
                  transformations used in the reduction.

  UPLO    CHARACTER*1
          Indicates whether the user wishes the pair (B,A) to be
          reduced to upper or lower controller Hessenberg form as
          follows:
          = 'U':  Upper controller Hessenberg form;
          = 'L':  Lower controller Hessenberg form.

Input/Output Parameters
  N       (input) INTEGER
          The actual state dimension, i.e. the order of the
          matrix A.  N >= 0.

  M       (input) INTEGER
          The actual input dimension, i.e. the number of columns of
          the matrix B.  M >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state transition matrix A to be transformed.
          On exit, the leading N-by-N part of this array contains
          the transformed state transition matrix U' * A * U.
          The annihilated elements are set to zero.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input matrix B to be transformed.
          On exit, the leading N-by-M part of this array contains
          the transformed input matrix U' * B.
          The annihilated elements are set to zero.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= MAX(1,N).

  U       (input/output) DOUBLE PRECISION array, dimension (LDU,*)
          On entry, if JOBU = 'U', then the leading N-by-N part of
          this array must contain a given matrix U (e.g. from a
          previous call to another SLICOT routine), and on exit, the
          leading N-by-N part of this array contains the product of
          the input matrix U and the state-space transformation
          matrix which reduces the given pair to controller
          Hessenberg form.
          On exit, if JOBU = 'I', then the leading N-by-N part of
          this array contains the matrix of accumulated unitary
          similarity transformations which reduces the given pair
          to controller Hessenberg form.
          If JOBU = 'N', the array U is not referenced and can be
          supplied as a dummy array (i.e. set parameter LDU = 1 and
          declare this array to be U(1,1) in the calling program).

  LDU     INTEGER
          The leading dimension of array U. If JOBU = 'U' or
          JOBU = 'I', LDU >= MAX(1,N); if JOBU = 'N', LDU >= 1.

Workspace
  DWORK   DOUBLE PRECISION array, dimension (MAX(N,M-1))

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.

Method
  The routine computes a unitary state-space transformation U, which
  reduces the pair (B,A) to one of the following controller
  Hessenberg forms:

                 |*  . . .  *|*  . . . . . .  *|
                 |   .      .|.               .|
                 |     .    .|.               .|
                 |       .  .|.               .|
    [U'B|U'AU] = |          *|.               .| N
                 |           |*               .|
                 |           |   .            .|
                 |           |     .          .|
                 |           |       .        .|
                 |           |         * . .  *|
                      M               N

  if UPLO = 'U', or

                 |*  . . *         |           |
                 |.        .       |           |
                 |.          .     |           |
                 |.            .   |           |
    [U'AU|U'B] = |.               *|           | N
                 |.               .|*          |
                 |.               .|.  .       |
                 |.               .|.    .     |
                 |.               .|.      .   |
                 |*  . . . . . .  *|*  . . .  *|
                         N               M
  if UPLO = 'L'.

  IF M >= N, then the matrix U'B is trapezoidal and U'AU is full.

References
  [1] Van Dooren, P. and Verhaegen, M.H.G.
      On the use of unitary state-space transformations.
      In : Contemporary Mathematics on Linear Algebra and its Role
      in Systems Theory, 47, AMS, Providence, 1985.

Numerical Aspects
  The algorithm requires O((N + M) x N**2) operations and is
  backward stable (see [1]).

Further Comments
  None
Example

Program Text

*     TB01MD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX
      PARAMETER        ( NMAX = 20, MMAX = 20 )
      INTEGER          LDA, LDB, LDU, LDWORK
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDU = NMAX,
     $                   LDWORK = NMAX )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, M, N
      CHARACTER*1      JOBU, UPLO
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), U(LDU,NMAX),
     $                 DWORK(LDWORK)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         TB01MD
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, JOBU, UPLO
      IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), I = 1,N ), J = 1,N )
         IF ( M.LE.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99992 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), I = 1,N ), J = 1,M )
            IF ( LSAME( JOBU, 'U' ) )
     $         READ ( NIN, FMT = * ) ( ( U(I,J), J = 1,N ), I = 1,N )
*           Reduce the pair (B,A) to controller Hessenberg form.
            CALL TB01MD( JOBU, UPLO, N, M, A, LDA, B, LDB, U, LDU,
     $                   DWORK, INFO )
*
            IF ( INFO.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99998 ) INFO
            ELSE
               WRITE ( NOUT, FMT = 99997 )
               DO 60 I = 1, N
                  WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N )
   60          CONTINUE
               WRITE ( NOUT, FMT = 99995 )
               DO 80 I = 1, N
                  WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,M )
   80          CONTINUE
               IF ( LSAME( JOBU, 'I' ).OR.LSAME( JOBU, 'U' ) ) THEN
                  WRITE ( NOUT, FMT = 99994 )
                  DO 100 I = 1, N
                     WRITE ( NOUT, FMT = 99996 ) ( U(I,J), J = 1,N )
  100             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TB01MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TB01MD = ',I2)
99997 FORMAT (' The transformed state transition matrix is ')
99996 FORMAT (20(1X,F8.4))
99995 FORMAT (/' The transformed input matrix is ')
99994 FORMAT (/' The transformation matrix that reduces (B,A) to contr',
     $       'oller Hessenberg form is ')
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
      END
Program Data
 TB01MD EXAMPLE PROGRAM DATA
   6     3     N     U
  35.0   1.0   6.0  26.0  19.0  24.0
   3.0  32.0   7.0  21.0  23.0  25.0
  31.0   9.0   2.0  22.0  27.0  20.0
   8.0  28.0  33.0  17.0  10.0  15.0
  30.0   5.0  34.0  12.0  14.0  16.0
   4.0  36.0  29.0  13.0  18.0  11.0
   1.0   5.0  11.0
  -1.0   4.0  11.0
  -5.0   1.0   9.0
 -11.0  -4.0   5.0
 -19.0 -11.0  -1.0
 -29.0 -20.0  -9.0
Program Results
 TB01MD EXAMPLE PROGRAM RESULTS

 The transformed state transition matrix is 
  60.3649  58.8853   5.0480  -5.4406   2.1382  -7.3870
  54.5832  33.1865  36.5234   6.3272  -3.1377   8.8154
  17.6406  21.4501 -13.5942   0.5417   1.6926   0.0786
  -9.0567  10.7202   0.3531   1.5444  -1.2846  24.6407
   0.0000   6.8796 -20.1372  -2.6440   2.4983 -21.8071
   0.0000   0.0000   0.0000   0.0000   0.0000  27.0000

 The transformed input matrix is 
 -16.8819  -8.8260  13.9202
   0.0000  13.8240  39.9205
   0.0000   0.0000   4.1928
   0.0000   0.0000   0.0000
   0.0000   0.0000   0.0000
   0.0000   0.0000   0.0000

Return to index