Purpose
To reduce the 1-norm of a system matrix S = ( A B ) ( C 0 ) corresponding to the triple (A,B,C), by balancing. This involves a diagonal similarity transformation inv(D)*A*D applied iteratively to A to make the rows and columns of -1 diag(D,I) * S * diag(D,I) as close in norm as possible. The balancing can be performed optionally on the following particular system matrices S = A, S = ( A B ) or S = ( A ) ( C )Specification
SUBROUTINE TB01ID( JOB, N, M, P, MAXRED, A, LDA, B, LDB, C, LDC, $ SCALE, INFO ) C .. Scalar Arguments .. CHARACTER JOB INTEGER INFO, LDA, LDB, LDC, M, N, P DOUBLE PRECISION MAXRED C .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ), $ SCALE( * )Arguments
Mode Parameters
JOB CHARACTER*1 Indicates which matrices are involved in balancing, as follows: = 'A': All matrices are involved in balancing; = 'B': B and A matrices are involved in balancing; = 'C': C and A matrices are involved in balancing; = 'N': B and C matrices are not involved in balancing.Input/Output Parameters
N (input) INTEGER The order of the matrix A, the number of rows of matrix B and the number of columns of matrix C. N represents the dimension of the state vector. N >= 0. M (input) INTEGER. The number of columns of matrix B. M represents the dimension of input vector. M >= 0. P (input) INTEGER. The number of rows of matrix C. P represents the dimension of output vector. P >= 0. MAXRED (input/output) DOUBLE PRECISION On entry, the maximum allowed reduction in the 1-norm of S (in an iteration) if zero rows or columns are encountered. If MAXRED > 0.0, MAXRED must be larger than one (to enable the norm reduction). If MAXRED <= 0.0, then the value 10.0 for MAXRED is used. On exit, if the 1-norm of the given matrix S is non-zero, the ratio between the 1-norm of the given matrix and the 1-norm of the balanced matrix. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the system state matrix A. On exit, the leading N-by-N part of this array contains the balanced matrix inv(D)*A*D. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,M) On entry, if M > 0, the leading N-by-M part of this array must contain the system input matrix B. On exit, if M > 0, the leading N-by-M part of this array contains the balanced matrix inv(D)*B. The array B is not referenced if M = 0. LDB INTEGER The leading dimension of the array B. LDB >= MAX(1,N) if M > 0. LDB >= 1 if M = 0. C (input/output) DOUBLE PRECISION array, dimension (LDC,N) On entry, if P > 0, the leading P-by-N part of this array must contain the system output matrix C. On exit, if P > 0, the leading P-by-N part of this array contains the balanced matrix C*D. The array C is not referenced if P = 0. LDC INTEGER The leading dimension of the array C. LDC >= MAX(1,P). SCALE (output) DOUBLE PRECISION array, dimension (N) The scaling factors applied to S. If D(j) is the scaling factor applied to row and column j, then SCALE(j) = D(j), for j = 1,...,N.Error Indicator
INFO INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.Method
Balancing consists of applying a diagonal similarity transformation -1 diag(D,I) * S * diag(D,I) to make the 1-norms of each row of the first N rows of S and its corresponding column nearly equal. Information about the diagonal matrix D is returned in the vector SCALE.References
[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. LAPACK Users' Guide: Second Edition. SIAM, Philadelphia, 1995.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* TB01ID EXAMPLE PROGRAM TEXT. * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 ) INTEGER LDA, LDB, LDC PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX ) * .. Local Scalars .. CHARACTER*1 JOB INTEGER I, INFO, J, M, N, P DOUBLE PRECISION MAXRED * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX), $ SCALE(NMAX) * .. External Subroutines .. EXTERNAL TB01ID, UD01MD * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, P, JOB, MAXRED IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99993 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99992 ) M ELSE READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N ) IF ( P.LT.0 .OR. P.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99991 ) P ELSE READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P ) * Balance system matrix S. CALL TB01ID( JOB, N, M, P, MAXRED, A, LDA, B, LDB, C, $ LDC, SCALE, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE CALL UD01MD( N, N, 5, NOUT, A, LDA, $ 'The balanced matrix A', INFO ) IF ( M.GT.0 ) $ CALL UD01MD( N, M, 5, NOUT, B, LDB, $ 'The balanced matrix B', INFO ) IF ( P.GT.0 ) $ CALL UD01MD( P, N, 5, NOUT, C, LDC, $ 'The balanced matrix C', INFO ) CALL UD01MD( 1, N, 5, NOUT, SCALE, 1, $ 'The scaling vector SCALE', INFO ) WRITE ( NOUT, FMT = 99994 ) MAXRED END IF END IF END IF END IF STOP * 99999 FORMAT (' TB01ID EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from TB01ID = ',I2) 99994 FORMAT (/' MAXRED is ',E13.4) 99993 FORMAT (/' N is out of range.',/' N = ',I5) 99992 FORMAT (/' M is out of range.',/' M = ',I5) 99991 FORMAT (/' P is out of range.',/' P = ',I5) ENDProgram Data
TB01ID EXAMPLE PROGRAM DATA 5 2 5 A 0.0 0.0 1.0000e+000 0.0 0.0 0.0 -1.5800e+006 -1.2570e+003 0.0 0.0 0.0 3.5410e+014 0.0 -1.4340e+003 0.0 -5.3300e+011 0.0 0.0 0.0 0.0 1.0000e+000 0.0 0.0 0.0 -1.8630e+004 -1.4820e+000 0.0 0.0 1.1030e+002 0.0 0.0 0.0 0.0 0.0 0.0 8.3330e-003 1.0000e+000 0.0 0.0 0.0 0.0 0.0 0.0 1.0000e+000 0.0 0.0 0.0 0.0 0.0 1.0000e+000 0.0 6.6640e-001 0.0 -6.2000e-013 0.0 0.0 0.0 0.0 -1.0000e-003 1.8960e+006 1.5080e+002Program Results
TB01ID EXAMPLE PROGRAM RESULTS The balanced matrix A ( 5X 5) 1 2 3 4 5 1 0.0000000D+00 0.1000000D+05 0.0000000D+00 0.0000000D+00 0.0000000D+00 2 -0.1580000D+03 -0.1257000D+04 0.0000000D+00 0.0000000D+00 0.0000000D+00 3 0.3541000D+05 0.0000000D+00 -0.1434000D+04 0.0000000D+00 -0.5330000D+03 4 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.1000000D+03 5 0.0000000D+00 0.0000000D+00 0.0000000D+00 -0.1863000D+03 -0.1482000D+01 The balanced matrix B ( 5X 2) 1 2 1 0.0000000D+00 0.0000000D+00 2 0.1103000D+04 0.0000000D+00 3 0.0000000D+00 0.0000000D+00 4 0.0000000D+00 0.0000000D+00 5 0.0000000D+00 0.8333000D+02 The balanced matrix C ( 5X 5) 1 2 3 4 5 1 0.1000000D-04 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.0000000D+00 2 0.0000000D+00 0.0000000D+00 0.1000000D+06 0.0000000D+00 0.0000000D+00 3 0.0000000D+00 0.0000000D+00 0.0000000D+00 0.1000000D-05 0.0000000D+00 4 0.6664000D-05 0.0000000D+00 -0.6200000D-07 0.0000000D+00 0.0000000D+00 5 0.0000000D+00 0.0000000D+00 -0.1000000D+03 0.1896000D+01 0.1508000D-01 The scaling vector SCALE ( 1X 5) 1 2 3 4 5 1 0.1000000D-04 0.1000000D+00 0.1000000D+06 0.1000000D-05 0.1000000D-03 MAXRED is 0.3488E+10