Purpose
To compute the matrices of the positive feedback controller | Ak | Bk | K = |----|----| | Ck | Dk | for the shaped plant | A | B | G = |---|---| | C | D | in the Discrete-Time Loop Shaping Design Procedure.Specification
SUBROUTINE SB10ZD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD, $ FACTOR, AK, LDAK, BK, LDBK, CK, LDCK, DK, $ LDDK, RCOND, TOL, IWORK, DWORK, LDWORK, BWORK, $ INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, $ LDDK, LDWORK, M, N, NP DOUBLE PRECISION FACTOR, TOL C .. Array Arguments .. INTEGER IWORK( * ) LOGICAL BWORK( * ) DOUBLE PRECISION A ( LDA, * ), AK( LDAK, * ), B ( LDB, * ), $ BK( LDBK, * ), C ( LDC, * ), CK( LDCK, * ), $ D ( LDD, * ), DK( LDDK, * ), DWORK( * ), $ RCOND( 6 )Arguments
Input/Output Parameters
N (input) INTEGER The order of the plant. N >= 0. M (input) INTEGER The column size of the matrix B. M >= 0. NP (input) INTEGER The row size of the matrix C. NP >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the system state matrix A of the shaped plant. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,M) The leading N-by-M part of this array must contain the system input matrix B of the shaped plant. LDB INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input) DOUBLE PRECISION array, dimension (LDC,N) The leading NP-by-N part of this array must contain the system output matrix C of the shaped plant. LDC INTEGER The leading dimension of the array C. LDC >= max(1,NP). D (input) DOUBLE PRECISION array, dimension (LDD,M) The leading NP-by-M part of this array must contain the system input/output matrix D of the shaped plant. LDD INTEGER The leading dimension of the array D. LDD >= max(1,NP). FACTOR (input) DOUBLE PRECISION = 1 implies that an optimal controller is required (not recommended); > 1 implies that a suboptimal controller is required achieving a performance FACTOR less than optimal. FACTOR >= 1. AK (output) DOUBLE PRECISION array, dimension (LDAK,N) The leading N-by-N part of this array contains the controller state matrix Ak. LDAK INTEGER The leading dimension of the array AK. LDAK >= max(1,N). BK (output) DOUBLE PRECISION array, dimension (LDBK,NP) The leading N-by-NP part of this array contains the controller input matrix Bk. LDBK INTEGER The leading dimension of the array BK. LDBK >= max(1,N). CK (output) DOUBLE PRECISION array, dimension (LDCK,N) The leading M-by-N part of this array contains the controller output matrix Ck. LDCK INTEGER The leading dimension of the array CK. LDCK >= max(1,M). DK (output) DOUBLE PRECISION array, dimension (LDDK,NP) The leading M-by-NP part of this array contains the controller matrix Dk. LDDK INTEGER The leading dimension of the array DK. LDDK >= max(1,M). RCOND (output) DOUBLE PRECISION array, dimension (6) RCOND(1) contains an estimate of the reciprocal condition number of the linear system of equations from which the solution of the P-Riccati equation is obtained; RCOND(2) contains an estimate of the reciprocal condition number of the linear system of equations from which the solution of the Q-Riccati equation is obtained; RCOND(3) contains an estimate of the reciprocal condition number of the matrix (gamma^2-1)*In - P*Q; RCOND(4) contains an estimate of the reciprocal condition number of the matrix Rx + Bx'*X*Bx; RCOND(5) contains an estimate of the reciprocal condition ^ number of the matrix Ip + D*Dk; RCOND(6) contains an estimate of the reciprocal condition ^ number of the matrix Im + Dk*D.Tolerances
TOL DOUBLE PRECISION Tolerance used for checking the nonsingularity of the matrices to be inverted. If TOL <= 0, then a default value equal to sqrt(EPS) is used, where EPS is the relative machine precision. TOL < 1.Workspace
IWORK INTEGER array, dimension (2*max(N,M+NP)) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) contains the optimal value of LDWORK. LDWORK INTEGER The dimension of the array DWORK. LDWORK >= 16*N*N + 5*M*M + 7*NP*NP + 6*M*N + 7*M*NP + 7*N*NP + 6*N + 2*(M + NP) + max(14*N+23,16*N,2*M-1,2*NP-1). For good performance, LDWORK must generally be larger. BWORK LOGICAL array, dimension (2*N)Error Indicator
INFO (output) INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the P-Riccati equation is not solved successfully; = 2: the Q-Riccati equation is not solved successfully; = 3: the iteration to compute eigenvalues or singular values failed to converge; = 4: the matrix (gamma^2-1)*In - P*Q is singular; = 5: the matrix Rx + Bx'*X*Bx is singular; ^ = 6: the matrix Ip + D*Dk is singular; ^ = 7: the matrix Im + Dk*D is singular; = 8: the matrix Ip - D*Dk is singular; = 9: the matrix Im - Dk*D is singular; = 10: the closed-loop system is unstable.Method
The routine implements the formulas given in [1].References
[1] Gu, D.-W., Petkov, P.H., and Konstantinov, M.M. On discrete H-infinity loop shaping design procedure routines. Technical Report 00-6, Dept. of Engineering, Univ. of Leicester, UK, 2000.Numerical Aspects
The accuracy of the results depends on the conditioning of the two Riccati equations solved in the controller design. For better conditioning it is advised to take FACTOR > 1.Further Comments
NoneExample
Program Text
* SB10ZD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER MMAX, NMAX, PMAX PARAMETER ( MMAX = 10, NMAX = 10, PMAX = 10 ) INTEGER LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, LDDK PARAMETER ( LDA = NMAX, LDAK = NMAX, LDB = NMAX, $ LDBK = NMAX, LDC = PMAX, LDCK = MMAX, $ LDD = PMAX, LDDK = MMAX ) INTEGER LIWORK PARAMETER ( LIWORK = 2*MAX( NMAX, MMAX + PMAX ) ) INTEGER LDWORK PARAMETER ( LDWORK = 16*NMAX*NMAX + 5*MMAX*MMAX + $ 7*PMAX*PMAX + 6*MMAX*NMAX + $ 7*MMAX*PMAX + 7*NMAX*PMAX + 6*NMAX + $ 2*( MMAX + PMAX ) + $ MAX( 14*NMAX + 23, 16*NMAX, $ 2*MMAX - 1, 2*PMAX - 1 ) ) * .. Local Scalars .. DOUBLE PRECISION FACTOR, TOL INTEGER I, INFO, J, M, N, NP * .. Local Arrays .. LOGICAL BWORK(2*NMAX) INTEGER IWORK(LIWORK) DOUBLE PRECISION A(LDA,NMAX), AK(LDAK,NMAX), B(LDB,MMAX), $ BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX), $ D(LDD,MMAX), DK(LDDK,PMAX), DWORK(LDWORK), $ RCOND( 6 ) * .. External Subroutines .. EXTERNAL SB10ZD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, NP IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99990 ) N ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99989 ) M ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99988 ) NP ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N ) READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP ) READ ( NIN, FMT = * ) FACTOR, TOL CALL SB10ZD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD, FACTOR, $ AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, RCOND, $ TOL, IWORK, DWORK, LDWORK, BWORK, INFO ) IF ( INFO.EQ.0 ) THEN WRITE ( NOUT, FMT = 99997 ) DO 10 I = 1, N WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,N ) 10 CONTINUE WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NP ) 20 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 30 I = 1, M WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,N ) 30 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 40 I = 1, M WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NP ) 40 CONTINUE WRITE( NOUT, FMT = 99993 ) WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1,6 ) ELSE WRITE( NOUT, FMT = 99998 ) INFO END IF END IF STOP * 99999 FORMAT (' SB10ZD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (/' INFO on exit from SB10ZD =',I2) 99997 FORMAT (/' The controller state matrix AK is'/) 99996 FORMAT (/' The controller input matrix BK is'/) 99995 FORMAT (/' The controller output matrix CK is'/) 99994 FORMAT (/' The controller matrix DK is'/) 99993 FORMAT (/' The estimated condition numbers are'/) 99992 FORMAT (10(1X,F8.4)) 99991 FORMAT ( 5(1X,D12.5)) 99990 FORMAT (/' N is out of range.',/' N = ',I5) 99989 FORMAT (/' M is out of range.',/' M = ',I5) 99988 FORMAT (/' NP is out of range.',/' NP = ',I5) ENDProgram Data
SB10LD EXAMPLE PROGRAM DATA 6 2 3 0.2 0.0 3.0 0.0 -0.3 -0.1 -3.0 0.2 -0.4 -0.3 0.0 0.0 -0.1 0.1 -1.0 0.0 0.0 -3.0 1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.3 0.6 2.0 0.1 -0.4 0.2 -4.0 0.0 0.0 0.2 -2.0 -1.0 -2.0 1.0 3.0 -3.0 -4.0 1.0 -2.0 0.0 1.0 1.0 5.0 1.0 -1.0 2.0 -2.0 0.0 -3.0 -3.0 0.0 1.0 -1.0 1.0 -1.0 2.0 4.0 -3.0 0.0 5.0 1.0 10.0 -6.0 -7.0 8.0 2.0 -4.0 1.1 0.0Program Results
SB10ZD EXAMPLE PROGRAM RESULTS The controller state matrix AK is 1.0128 0.5101 -0.1546 1.1300 3.3759 0.4911 -2.1257 -1.4517 -0.4486 0.3493 -1.5506 -1.4296 -1.0930 -0.6026 -0.1344 0.2253 -1.5625 -0.6762 0.3207 0.1698 0.2376 -1.1781 -0.8705 0.2896 0.5017 0.9006 0.0668 2.3613 0.2049 0.3703 1.0787 0.6703 0.2783 -0.7213 0.4918 0.7435 The controller input matrix BK is 0.4132 0.3112 -0.8077 0.2140 0.4253 0.1811 -0.0710 0.0807 0.3558 -0.0121 -0.2019 0.0249 0.1047 0.1399 -0.0457 -0.2542 -0.3472 0.0523 The controller output matrix CK is -0.0372 -0.0456 -0.0040 0.0962 -0.2059 -0.0571 0.1999 0.2994 0.1335 -0.0251 -0.3108 0.2048 The controller matrix DK is 0.0629 -0.0022 0.0363 -0.0228 0.0195 0.0600 The estimated condition numbers are 0.27949D-03 0.66679D-03 0.45677D-01 0.23433D-07 0.68495D-01 0.76854D-01