SB10WD

H2 optimal controller matrices using state feedback and output injection matrices (continuous-time)

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the matrices of the H2 optimal controller

           | AK | BK |
       K = |----|----|,
           | CK | DK |

  from the state feedback matrix F and output injection matrix H as
  determined by the SLICOT Library routine SB10VD.

Specification
      SUBROUTINE SB10WD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, F, LDF, H, LDH, TU, LDTU, TY, LDTY,
     $                   AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
     $                   LDDK, LDF, LDH, LDTU, LDTY, M, N, NCON, NMEAS,
     $                   NP
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
     $                   BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DK( LDDK, * ), F( LDF, * ),
     $                   H( LDH, * ), TU( LDTU, * ), TY( LDTY, * )

Arguments

Input/Output Parameters

  N       (input) INTEGER
          The order of the system.  N >= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M >= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP >= 0.

  NCON    (input) INTEGER
          The number of control inputs (M2).  M >= NCON >= 0.
          NP-NMEAS >= NCON.

  NMEAS   (input) INTEGER
          The number of measurements (NP2).  NP >= NMEAS >= 0.
          M-NCON >= NMEAS.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          system state matrix A.

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          system input matrix B. Only the submatrix
          B2 = B(:,M-M2+1:M) is used.

  LDB     INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading NP-by-N part of this array must contain the
          system output matrix C. Only the submatrix
          C2 = C(NP-NP2+1:NP,:) is used.

  LDC     INTEGER
          The leading dimension of the array C.  LDC >= max(1,NP).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          The leading NP-by-M part of this array must contain the
          system input/output matrix D. Only the submatrix
          D22 = D(NP-NP2+1:NP,M-M2+1:M) is used.

  LDD     INTEGER
          The leading dimension of the array D.  LDD >= max(1,NP).

  F       (input) DOUBLE PRECISION array, dimension (LDF,N)
          The leading NCON-by-N part of this array must contain the
          state feedback matrix F.

  LDF     INTEGER
          The leading dimension of the array F.  LDF >= max(1,NCON).

  H       (input) DOUBLE PRECISION array, dimension (LDH,NMEAS)
          The leading N-by-NMEAS part of this array must contain the
          output injection matrix H.

  LDH     INTEGER
          The leading dimension of the array H.  LDH >= max(1,N).

  TU      (input) DOUBLE PRECISION array, dimension (LDTU,M2)
          The leading M2-by-M2 part of this array must contain the
          control transformation matrix TU, as obtained by the
          SLICOT Library routine SB10UD.

  LDTU    INTEGER
          The leading dimension of the array TU.  LDTU >= max(1,M2).

  TY      (input) DOUBLE PRECISION array, dimension (LDTY,NP2)
          The leading NP2-by-NP2 part of this array must contain the
          measurement transformation matrix TY, as obtained by the
          SLICOT Library routine SB10UD.

  LDTY    INTEGER
          The leading dimension of the array TY.
          LDTY >= max(1,NP2).

  AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
          The leading N-by-N part of this array contains the
          controller state matrix AK.

  LDAK    INTEGER
          The leading dimension of the array AK.  LDAK >= max(1,N).

  BK      (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
          The leading N-by-NMEAS part of this array contains the
          controller input matrix BK.

  LDBK    INTEGER
          The leading dimension of the array BK.  LDBK >= max(1,N).

  CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
          The leading NCON-by-N part of this array contains the
          controller output matrix CK.

  LDCK    INTEGER
          The leading dimension of the array CK.
          LDCK >= max(1,NCON).

  DK      (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
          The leading NCON-by-NMEAS part of this array contains the
          controller input/output matrix DK.

  LDDK    INTEGER
          The leading dimension of the array DK.
          LDDK >= max(1,NCON).

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.

Method
  The routine implements the formulas given in [1], [2].

References
  [1] Zhou, K., Doyle, J.C., and Glover, K.
      Robust and Optimal Control.
      Prentice-Hall, Upper Saddle River, NJ, 1996.

  [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
      Smith, R.
      mu-Analysis and Synthesis Toolbox.
      The MathWorks Inc., Natick, Mass., 1995.

Numerical Aspects
  The accuracy of the result depends on the condition numbers of the
  input and output transformations.

Further Comments
  None
Example

Program Text

  None
Program Data
  None
Program Results
  None

Return to Supporting Routines index