Purpose
To compute the state feedback and the output injection matrices for an H2 optimal n-state controller for the system | A | B1 B2 | | A | B | P = |----|---------| = |---|---| | C1 | 0 D12 | | C | D | | C2 | D21 D22 | where B2 has as column size the number of control inputs (NCON) and C2 has as row size the number of measurements (NMEAS) being provided to the controller. It is assumed that (A1) (A,B2) is stabilizable and (C2,A) is detectable, (A2) D12 is full column rank with D12 = | 0 | and D21 is | I | full row rank with D21 = | 0 I | as obtained by the SLICOT Library routine SB10UD. Matrix D is not used explicitly.Specification
SUBROUTINE SB10VD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC, $ F, LDF, H, LDH, X, LDX, Y, LDY, XYCOND, IWORK, $ DWORK, LDWORK, BWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LDC, LDF, LDH, LDWORK, LDX, $ LDY, M, N, NCON, NMEAS, NP C .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ), $ DWORK( * ), F( LDF, * ), H( LDH, * ), $ X( LDX, * ), XYCOND( 2 ), Y( LDY, * )Arguments
Input/Output Parameters
N (input) INTEGER The order of the system. N >= 0. M (input) INTEGER The column size of the matrix B. M >= 0. NP (input) INTEGER The row size of the matrix C. NP >= 0. NCON (input) INTEGER The number of control inputs (M2). M >= NCON >= 0, NP-NMEAS >= NCON. NMEAS (input) INTEGER The number of measurements (NP2). NP >= NMEAS >= 0, M-NCON >= NMEAS. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the system state matrix A. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,M) The leading N-by-M part of this array must contain the system input matrix B. LDB INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input) DOUBLE PRECISION array, dimension (LDC,N) The leading NP-by-N part of this array must contain the system output matrix C. LDC INTEGER The leading dimension of the array C. LDC >= max(1,NP). F (output) DOUBLE PRECISION array, dimension (LDF,N) The leading NCON-by-N part of this array contains the state feedback matrix F. LDF INTEGER The leading dimension of the array F. LDF >= max(1,NCON). H (output) DOUBLE PRECISION array, dimension (LDH,NMEAS) The leading N-by-NMEAS part of this array contains the output injection matrix H. LDH INTEGER The leading dimension of the array H. LDH >= max(1,N). X (output) DOUBLE PRECISION array, dimension (LDX,N) The leading N-by-N part of this array contains the matrix X, solution of the X-Riccati equation. LDX INTEGER The leading dimension of the array X. LDX >= max(1,N). Y (output) DOUBLE PRECISION array, dimension (LDY,N) The leading N-by-N part of this array contains the matrix Y, solution of the Y-Riccati equation. LDY INTEGER The leading dimension of the array Y. LDY >= max(1,N). XYCOND (output) DOUBLE PRECISION array, dimension (2) XYCOND(1) contains an estimate of the reciprocal condition number of the X-Riccati equation; XYCOND(2) contains an estimate of the reciprocal condition number of the Y-Riccati equation.Workspace
IWORK INTEGER array, dimension (max(2*N,N*N)) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) contains the optimal LDWORK. LDWORK INTEGER The dimension of the array DWORK. LDWORK >= 13*N*N + 12*N + 5. For good performance, LDWORK must generally be larger. BWORK LOGICAL array, dimension (2*N)Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: if the X-Riccati equation was not solved successfully; = 2: if the Y-Riccati equation was not solved successfully.Method
The routine implements the formulas given in [1], [2]. The X- and Y-Riccati equations are solved with condition and accuracy estimates [3].References
[1] Zhou, K., Doyle, J.C., and Glover, K. Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ, 1996. [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and Smith, R. mu-Analysis and Synthesis Toolbox. The MathWorks Inc., Natick, Mass., 1995. [3] Petkov, P.Hr., Konstantinov, M.M., and Mehrmann, V. DGRSVX and DMSRIC: Fortan 77 subroutines for solving continuous-time matrix algebraic Riccati equations with condition and accuracy estimates. Preprint SFB393/98-16, Fak. f. Mathematik, Tech. Univ. Chemnitz, May 1998.Numerical Aspects
The precision of the solution of the matrix Riccati equations can be controlled by the values of the condition numbers XYCOND(1) and XYCOND(2) of these equations.Further Comments
The Riccati equations are solved by the Schur approach implementing condition and accuracy estimates.Example
Program Text
NoneProgram Data
NoneProgram Results
None