Purpose
To compute the matrices of an H-infinity (sub)optimal controller | AK | BK | K = |----|----|, | CK | DK | from the state feedback matrix F and output injection matrix H as determined by the SLICOT Library routine SB10QD.Specification
SUBROUTINE SB10RD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB, $ C, LDC, D, LDD, F, LDF, H, LDH, TU, LDTU, TY, $ LDTY, X, LDX, Y, LDY, AK, LDAK, BK, LDBK, CK, $ LDCK, DK, LDDK, IWORK, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, $ LDDK, LDF, LDH, LDTU, LDTY, LDWORK, LDX, LDY, $ M, N, NCON, NMEAS, NP DOUBLE PRECISION GAMMA C .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ), $ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ), $ D( LDD, * ), DK( LDDK, * ), DWORK( * ), $ F( LDF, * ), H( LDH, * ), TU( LDTU, * ), $ TY( LDTY, * ), X( LDX, * ), Y( LDY, * )Arguments
Input/Output Parameters
N (input) INTEGER The order of the system. N >= 0. M (input) INTEGER The column size of the matrix B. M >= 0. NP (input) INTEGER The row size of the matrix C. NP >= 0. NCON (input) INTEGER The number of control inputs (M2). M >= NCON >= 0. NP-NMEAS >= NCON. NMEAS (input) INTEGER The number of measurements (NP2). NP >= NMEAS >= 0. M-NCON >= NMEAS. GAMMA (input) DOUBLE PRECISION The value of gamma. It is assumed that gamma is sufficiently large so that the controller is admissible. GAMMA >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the system state matrix A. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,M) The leading N-by-M part of this array must contain the system input matrix B. LDB INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input) DOUBLE PRECISION array, dimension (LDC,N) The leading NP-by-N part of this array must contain the system output matrix C. LDC INTEGER The leading dimension of the array C. LDC >= max(1,NP). D (input) DOUBLE PRECISION array, dimension (LDD,M) The leading NP-by-M part of this array must contain the system input/output matrix D. LDD INTEGER The leading dimension of the array D. LDD >= max(1,NP). F (input) DOUBLE PRECISION array, dimension (LDF,N) The leading M-by-N part of this array must contain the state feedback matrix F. LDF INTEGER The leading dimension of the array F. LDF >= max(1,M). H (input) DOUBLE PRECISION array, dimension (LDH,NP) The leading N-by-NP part of this array must contain the output injection matrix H. LDH INTEGER The leading dimension of the array H. LDH >= max(1,N). TU (input) DOUBLE PRECISION array, dimension (LDTU,M2) The leading M2-by-M2 part of this array must contain the control transformation matrix TU, as obtained by the SLICOT Library routine SB10PD. LDTU INTEGER The leading dimension of the array TU. LDTU >= max(1,M2). TY (input) DOUBLE PRECISION array, dimension (LDTY,NP2) The leading NP2-by-NP2 part of this array must contain the measurement transformation matrix TY, as obtained by the SLICOT Library routine SB10PD. LDTY INTEGER The leading dimension of the array TY. LDTY >= max(1,NP2). X (input) DOUBLE PRECISION array, dimension (LDX,N) The leading N-by-N part of this array must contain the matrix X, solution of the X-Riccati equation, as obtained by the SLICOT Library routine SB10QD. LDX INTEGER The leading dimension of the array X. LDX >= max(1,N). Y (input) DOUBLE PRECISION array, dimension (LDY,N) The leading N-by-N part of this array must contain the matrix Y, solution of the Y-Riccati equation, as obtained by the SLICOT Library routine SB10QD. LDY INTEGER The leading dimension of the array Y. LDY >= max(1,N). AK (output) DOUBLE PRECISION array, dimension (LDAK,N) The leading N-by-N part of this array contains the controller state matrix AK. LDAK INTEGER The leading dimension of the array AK. LDAK >= max(1,N). BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS) The leading N-by-NMEAS part of this array contains the controller input matrix BK. LDBK INTEGER The leading dimension of the array BK. LDBK >= max(1,N). CK (output) DOUBLE PRECISION array, dimension (LDCK,N) The leading NCON-by-N part of this array contains the controller output matrix CK. LDCK INTEGER The leading dimension of the array CK. LDCK >= max(1,NCON). DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS) The leading NCON-by-NMEAS part of this array contains the controller input/output matrix DK. LDDK INTEGER The leading dimension of the array DK. LDDK >= max(1,NCON).Workspace
IWORK INTEGER array, dimension (LIWORK), where LIWORK = max(2*(max(NP,M)-M2-NP2,M2,N),NP2) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) contains the optimal LDWORK. LDWORK INTEGER The dimension of the array DWORK. LDWORK >= max(1, M2*NP2 + NP2*NP2 + M2*M2 + max(D1*D1 + max(2*D1, (D1+D2)*NP2), D2*D2 + max(2*D2, D2*M2), 3*N, N*(2*NP2 + M2) + max(2*N*M2, M2*NP2 + max(M2*M2+3*M2, NP2*(2*NP2+ M2+max(NP2,N)))))) where D1 = NP1 - M2, D2 = M1 - NP2, NP1 = NP - NP2, M1 = M - M2. For good performance, LDWORK must generally be larger. Denoting Q = max(M1,M2,NP1,NP2), an upper bound is max( 1, Q*(3*Q + 3*N + max(2*N, 4*Q + max(Q, N)))).Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: if the controller is not admissible (too small value of gamma); = 2: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is zero.Method
The routine implements the Glover's and Doyle's formulas [1],[2].References
[1] Glover, K. and Doyle, J.C. State-space formulae for all stabilizing controllers that satisfy an Hinf norm bound and relations to risk sensitivity. Systems and Control Letters, vol. 11, pp. 167-172, 1988. [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and Smith, R. mu-Analysis and Synthesis Toolbox. The MathWorks Inc., Natick, Mass., 1995.Numerical Aspects
The accuracy of the result depends on the condition numbers of the input and output transformations.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None