Purpose
To compute the matrices of the positive feedback controller | Ak | Bk | K = |----|----| | Ck | Dk | for the shaped plant | A | B | G = |---|---| | C | 0 | in the Discrete-Time Loop Shaping Design Procedure.Specification
SUBROUTINE SB10KD( N, M, NP, A, LDA, B, LDB, C, LDC, FACTOR, $ AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, RCOND, $ IWORK, DWORK, LDWORK, BWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDDK, $ LDWORK, M, N, NP DOUBLE PRECISION FACTOR C .. Array Arguments .. INTEGER IWORK( * ) LOGICAL BWORK( * ) DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ), $ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ), $ DK( LDDK, * ), DWORK( * ), RCOND( 4 )Arguments
Input/Output Parameters
N (input) INTEGER The order of the plant. N >= 0. M (input) INTEGER The column size of the matrix B. M >= 0. NP (input) INTEGER The row size of the matrix C. NP >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the system state matrix A of the shaped plant. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,M) The leading N-by-M part of this array must contain the system input matrix B of the shaped plant. LDB INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input) DOUBLE PRECISION array, dimension (LDC,N) The leading NP-by-N part of this array must contain the system output matrix C of the shaped plant. LDC INTEGER The leading dimension of the array C. LDC >= max(1,NP). FACTOR (input) DOUBLE PRECISION = 1 implies that an optimal controller is required; > 1 implies that a suboptimal controller is required achieving a performance FACTOR less than optimal. FACTOR >= 1. AK (output) DOUBLE PRECISION array, dimension (LDAK,N) The leading N-by-N part of this array contains the controller state matrix Ak. LDAK INTEGER The leading dimension of the array AK. LDAK >= max(1,N). BK (output) DOUBLE PRECISION array, dimension (LDBK,NP) The leading N-by-NP part of this array contains the controller input matrix Bk. LDBK INTEGER The leading dimension of the array BK. LDBK >= max(1,N). CK (output) DOUBLE PRECISION array, dimension (LDCK,N) The leading M-by-N part of this array contains the controller output matrix Ck. LDCK INTEGER The leading dimension of the array CK. LDCK >= max(1,M). DK (output) DOUBLE PRECISION array, dimension (LDDK,NP) The leading M-by-NP part of this array contains the controller matrix Dk. LDDK INTEGER The leading dimension of the array DK. LDDK >= max(1,M). RCOND (output) DOUBLE PRECISION array, dimension (4) RCOND(1) contains an estimate of the reciprocal condition number of the linear system of equations from which the solution of the P-Riccati equation is obtained; RCOND(2) contains an estimate of the reciprocal condition number of the linear system of equations from which the solution of the Q-Riccati equation is obtained; RCOND(3) contains an estimate of the reciprocal condition number of the linear system of equations from which the solution of the X-Riccati equation is obtained; RCOND(4) contains an estimate of the reciprocal condition number of the matrix Rx + Bx'*X*Bx (see the comments in the code).Workspace
IWORK INTEGER array, dimension (2*max(N,NP+M)) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) contains the optimal value of LDWORK. LDWORK INTEGER The dimension of the array DWORK. LDWORK >= 15*N*N + 6*N + max( 14*N+23, 16*N, 2*N+NP+M, 3*(NP+M) ) + max( N*N, 11*N*NP + 2*M*M + 8*NP*NP + 8*M*N + 4*M*NP + NP ). For good performance, LDWORK must generally be larger. BWORK LOGICAL array, dimension (2*N)Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the P-Riccati equation is not solved successfully; = 2: the Q-Riccati equation is not solved successfully; = 3: the X-Riccati equation is not solved successfully; = 4: the iteration to compute eigenvalues failed to converge; = 5: the matrix Rx + Bx'*X*Bx is singular; = 6: the closed-loop system is unstable.Method
The routine implements the method presented in [1].References
[1] McFarlane, D. and Glover, K. A loop shaping design procedure using H_infinity synthesis. IEEE Trans. Automat. Control, vol. AC-37, no. 6, pp. 759-769, 1992.Numerical Aspects
The accuracy of the results depends on the conditioning of the two Riccati equations solved in the controller design. For better conditioning it is advised to take FACTOR > 1.Further Comments
NoneExample
Program Text
* SB10KD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10 ) INTEGER LDA, LDAK, LDB, LDBK, LDC, LDCK, LDDK PARAMETER ( LDA = NMAX, LDAK = NMAX, LDB = NMAX, $ LDBK = NMAX, LDC = PMAX, LDCK = MMAX, $ LDDK = MMAX ) INTEGER LIWORK PARAMETER ( LIWORK = 2*MAX( NMAX, MMAX + PMAX ) ) INTEGER LDWORK PARAMETER ( LDWORK = 15*NMAX*NMAX + 6*NMAX + $ MAX( 14*NMAX + 23, 16*NMAX, $ 2*NMAX+PMAX+MMAX, $ 3*(PMAX+MMAX) ) + $ MAX( NMAX*NMAX, $ 11*NMAX*PMAX + 2*MMAX*MMAX + $ 8*PMAX*PMAX + 8*MMAX*NMAX + $ 4*MMAX*PMAX + PMAX ) ) * .. Local Scalars .. DOUBLE PRECISION FACTOR INTEGER I, INFO, J, M, N, NP * .. Local Arrays .. LOGICAL BWORK(2*NMAX) INTEGER IWORK(LIWORK) DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX), $ BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX), $ DK(LDDK,PMAX), DWORK(LDWORK), RCOND(4) * .. External Subroutines .. EXTERNAL SB10KD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, NP IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99990 ) N ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99989 ) M ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99988 ) NP ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N ) READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP ) READ ( NIN, FMT = * ) FACTOR CALL SB10KD( N, M, NP, A, LDA, B, LDB, C, LDC, FACTOR, AK, $ LDAK, BK, LDBK, CK, LDCK, DK, LDDK, RCOND, $ IWORK, DWORK, LDWORK, BWORK, INFO ) IF ( INFO.EQ.0 ) THEN WRITE ( NOUT, FMT = 99997 ) DO 10 I = 1, N WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,N ) 10 CONTINUE WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NP ) 20 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 30 I = 1, M WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,N ) 30 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 40 I = 1, M WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NP ) 40 CONTINUE WRITE( NOUT, FMT = 99993 ) WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 4 ) ELSE WRITE( NOUT, FMT = 99998 ) INFO END IF END IF STOP * 99999 FORMAT (' SB10KD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (/' INFO on exit from SB10KD =',I2) 99997 FORMAT (/' The controller state matrix AK is'/) 99996 FORMAT (/' The controller input matrix BK is'/) 99995 FORMAT (/' The controller output matrix CK is'/) 99994 FORMAT (/' The controller matrix DK is'/) 99993 FORMAT (/' The estimated condition numbers are'/) 99992 FORMAT (10(1X,F8.4)) 99991 FORMAT ( 5(1X,D12.5)) 99990 FORMAT (/' N is out of range.',/' N = ',I5) 99989 FORMAT (/' M is out of range.',/' M = ',I5) 99988 FORMAT (/' NP is out of range.',/' NP = ',I5) ENDProgram Data
SB10KD EXAMPLE PROGRAM DATA 6 2 2 0.2 0.0 0.3 0.0 -0.3 -0.1 -0.3 0.2 -0.4 -0.3 0.0 0.0 -0.1 0.1 -0.1 0.0 0.0 -0.3 0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.3 0.6 0.2 0.1 -0.4 0.2 -0.4 0.0 0.0 0.2 -0.2 -1.0 -2.0 1.0 3.0 -3.0 -4.0 1.0 -2.0 0.0 1.0 1.0 5.0 1.0 -1.0 2.0 -2.0 0.0 -3.0 -3.0 0.0 1.0 -1.0 1.0 -1.0 1.1Program Results
SB10KD EXAMPLE PROGRAM RESULTS The controller state matrix AK is 0.0337 0.0222 0.0858 0.1264 -0.1872 0.1547 0.4457 0.0668 -0.2255 -0.3204 -0.4548 -0.0691 -0.2419 -0.2506 -0.0982 -0.1321 -0.0130 -0.0838 -0.4402 0.3654 -0.0335 -0.2444 0.6366 -0.6469 -0.3623 0.3854 0.4162 0.4502 0.0065 0.1261 -0.0121 -0.4377 0.0604 0.2265 -0.3389 0.4542 The controller input matrix BK is 0.0931 -0.0269 -0.0872 0.1599 0.0956 -0.1469 -0.1728 0.0129 0.2022 -0.1154 0.2419 -0.1737 The controller output matrix CK is -0.3677 0.2188 0.0403 -0.0854 0.3564 -0.3535 0.1624 -0.0708 0.0058 0.0606 -0.2163 0.1802 The controller matrix DK is -0.0857 -0.0246 0.0460 0.0074 The estimated condition numbers are 0.11269D-01 0.17596D-01 0.18225D+00 0.75968D-03