SB10JD

Converting a descriptor state-space system into regular state-space form

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To convert the descriptor state-space system

  E*dx/dt = A*x + B*u
        y = C*x + D*u

  into regular state-space form

   dx/dt = Ad*x + Bd*u
       y = Cd*x + Dd*u .

Specification
      SUBROUTINE SB10JD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD, E,
     $                   LDE, NSYS, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LDC, LDD, LDE, LDWORK, M, N,
     $                   NP, NSYS
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   D( LDD, * ), DWORK( * ),  E( LDE, * )

Arguments

Input/Output Parameters

  N       (input) INTEGER
          The order of the descriptor system.  N >= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M >= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state matrix A of the descriptor system.
          On exit, the leading NSYS-by-NSYS part of this array
          contains the state matrix Ad of the converted system.

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input matrix B of the descriptor system.
          On exit, the leading NSYS-by-M part of this array
          contains the input matrix Bd of the converted system.

  LDB     INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading NP-by-N part of this array must
          contain the output matrix C of the descriptor system.
          On exit, the leading NP-by-NSYS part of this array
          contains the output matrix Cd of the converted system.

  LDC     INTEGER
          The leading dimension of the array C.  LDC >= max(1,NP).

  D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
          On entry, the leading NP-by-M part of this array must
          contain the matrix D of the descriptor system.
          On exit, the leading NP-by-M part of this array contains
          the matrix Dd of the converted system.

  LDD     INTEGER
          The leading dimension of the array D.  LDD >= max(1,NP).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix E of the descriptor system.
          On exit, this array contains no useful information.

  LDE     INTEGER
          The leading dimension of the array E.  LDE >= max(1,N).

  NSYS    (output) INTEGER
          The order of the converted state-space system.

Workspace
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) contains the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK >= max( 1, 2*N*N + 2*N + N*MAX( 5, N + M + NP ) ).
          For good performance, LDWORK must generally be larger.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the iteration for computing singular value
                decomposition did not converge.

Method
  The routine performs the transformations described in [1].

References
  [1] Chiang, R.Y. and Safonov, M.G.
      Robust Control Toolbox User's Guide.
      The MathWorks Inc., Natick, Mass., 1992.

Further Comments
  None
Example

Program Text

  None
Program Data
  None
Program Results
  None

Return to Supporting Routines index