SB10ID

Positive feedback controller for a continuous-time system

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the matrices of the positive feedback controller

           | Ak | Bk |
       K = |----|----|
           | Ck | Dk |

  for the shaped plant

           | A | B |
       G = |---|---|
           | C | D |

  in the McFarlane/Glover Loop Shaping Design Procedure.

Specification
      SUBROUTINE SB10ID( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   FACTOR, NK, AK, LDAK, BK, LDBK, CK, LDCK,
     $                   DK, LDDK, RCOND, IWORK, DWORK, LDWORK, BWORK,
     $                   INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
     $                   LDDK, LDWORK, M, N, NK, NP
      DOUBLE PRECISION   FACTOR
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      LOGICAL            BWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
     $                   BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DK( LDDK, * ), DWORK( * ),
     $                   RCOND( 2 )

Arguments

Input/Output Parameters

  N       (input) INTEGER
          The order of the plant.  N >= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M >= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP >= 0.

  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          system state matrix A of the shaped plant.

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          system input matrix B of the shaped plant.

  LDB     INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading NP-by-N part of this array must contain the
          system output matrix C of the shaped plant.

  LDC     INTEGER
          The leading dimension of the array C.  LDC >= max(1,NP).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          The leading NP-by-M part of this array must contain the
          system matrix D of the shaped plant.

  LDD     INTEGER
          The leading dimension of the array D.  LDD >= max(1,NP).

  FACTOR  (input) DOUBLE PRECISION
          = 1 implies that an optimal controller is required;
          > 1 implies that a suboptimal controller is required,
              achieving a performance FACTOR less than optimal.
          FACTOR >= 1.

  NK      (output) INTEGER
          The order of the positive feedback controller.  NK <= N.

  AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
          The leading NK-by-NK part of this array contains the
          controller state matrix Ak.

  LDAK    INTEGER
          The leading dimension of the array AK.  LDAK >= max(1,N).

  BK      (output) DOUBLE PRECISION array, dimension (LDBK,NP)
          The leading NK-by-NP part of this array contains the
          controller input matrix Bk.

  LDBK    INTEGER
          The leading dimension of the array BK.  LDBK >= max(1,N).

  CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
          The leading M-by-NK part of this array contains the
          controller output matrix Ck.

  LDCK    INTEGER
          The leading dimension of the array CK.  LDCK >= max(1,M).

  DK      (output) DOUBLE PRECISION array, dimension (LDDK,NP)
          The leading M-by-NP part of this array contains the
          controller matrix Dk.

  LDDK    INTEGER
          The leading dimension of the array DK.  LDDK >= max(1,M).

  RCOND   (output) DOUBLE PRECISION array, dimension (2)
          RCOND(1) contains an estimate of the reciprocal condition
                   number of the X-Riccati equation;
          RCOND(2) contains an estimate of the reciprocal condition
                   number of the Z-Riccati equation.

Workspace
  IWORK   INTEGER array, dimension (max(2*N,N*N,M,NP))

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) contains the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK >= 4*N*N + M*M + NP*NP + 2*M*N + N*NP + 4*N +
                    max( 6*N*N + 5 + max(1,4*N*N+8*N), N*NP + 2*N ).
          For good performance, LDWORK must generally be larger.
          An upper bound of LDWORK in the above formula is
          LDWORK >= 10*N*N + M*M + NP*NP + 2*M*N + 2*N*NP + 4*N +
                    5 + max(1,4*N*N+8*N).

  BWORK   LOGICAL array, dimension (2*N)

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the X-Riccati equation is not solved successfully;
          = 2:  the Z-Riccati equation is not solved successfully;
          = 3:  the iteration to compute eigenvalues or singular
                values failed to converge;
          = 4:  the matrix Ip - D*Dk is singular;
          = 5:  the matrix Im - Dk*D is singular;
          = 6:  the closed-loop system is unstable.

Method
  The routine implements the formulas given in [1].

References
  [1] McFarlane, D. and Glover, K.
      A loop shaping design procedure using H_infinity synthesis.
      IEEE Trans. Automat. Control, vol. AC-37, no. 6, pp. 759-769,
      1992.

Numerical Aspects
  The accuracy of the results depends on the conditioning of the
  two Riccati equations solved in the controller design (see the
  output parameter RCOND).

Further Comments
  None
Example

Program Text

*     SB10ID EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 10, MMAX = 10, PMAX = 10 )
      INTEGER          LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, LDDK
      PARAMETER        ( LDA  = NMAX, LDAK = NMAX, LDB  = NMAX,
     $                   LDBK = NMAX, LDC  = PMAX, LDCK = MMAX,
     $                   LDD  = PMAX, LDDK = MMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = MAX( 2*NMAX, NMAX*NMAX, MMAX, PMAX ) )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 4*NMAX*NMAX + MMAX*MMAX + PMAX*PMAX +
     $                            2*MMAX*NMAX + NMAX*PMAX + 4*NMAX +
     $                            MAX( 10*NMAX*NMAX + 8*NMAX + 5,
     $                                    NMAX*PMAX + 2*NMAX ) )
*     .. Local Scalars ..
      DOUBLE PRECISION FACTOR
      INTEGER          I, INFO, J, M, N, NK, NP
*     .. Local Arrays ..
      LOGICAL          BWORK(2*NMAX)
      INTEGER          IWORK(LIWORK)
      DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX),
     $                 BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX),
     $                 D(LDD,MMAX), DK(LDDK,PMAX), DWORK(LDWORK),
     $                 RCOND( 2 )
*     .. External Subroutines ..
      EXTERNAL         SB10ID
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, NP
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99989 ) M
      ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) NP
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
         READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
         READ ( NIN, FMT = * ) FACTOR
         CALL SB10ID( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
     $                FACTOR, NK, AK, LDAK, BK, LDBK, CK, LDCK,
     $                DK, LDDK, RCOND, IWORK, DWORK, LDWORK,
     $                BWORK, INFO )
         IF ( INFO.EQ.0 ) THEN
            WRITE ( NOUT, FMT = 99997 )
            DO 10 I = 1, NK
               WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,NK )
   10       CONTINUE
            WRITE ( NOUT, FMT = 99996 )
            DO 20 I = 1, NK
               WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NP )
   20       CONTINUE
            WRITE ( NOUT, FMT = 99995 )
            DO 30 I = 1, M
               WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,NK )
   30       CONTINUE
            WRITE ( NOUT, FMT = 99994 )
            DO 40 I = 1, M
               WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NP )
   40       CONTINUE
            WRITE( NOUT, FMT = 99993 )
            WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 2 )
         ELSE
            WRITE( NOUT, FMT = 99998 ) INFO
         END IF
      END IF
      STOP
*
99999 FORMAT (' SB10ID EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from SB10ID =',I2)
99997 FORMAT (/' The controller state matrix AK is'/)
99996 FORMAT (/' The controller input matrix BK is'/)
99995 FORMAT (/' The controller output matrix CK is'/)
99994 FORMAT (/' The controller matrix DK is'/)
99993 FORMAT (/' The estimated condition numbers are'/)
99992 FORMAT (10(1X,F9.4))
99991 FORMAT ( 2(1X,D12.5))
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' NP is out of range.',/' NP = ',I5)
      END
Program Data
 SB10ID EXAMPLE PROGRAM DATA
   6     2     3   
  -1.0  0.0  4.0  5.0 -3.0 -2.0
  -2.0  4.0 -7.0 -2.0  0.0  3.0
  -6.0  9.0 -5.0  0.0  2.0 -1.0
  -8.0  4.0  7.0 -1.0 -3.0  0.0
   2.0  5.0  8.0 -9.0  1.0 -4.0
   3.0 -5.0  8.0  0.0  2.0 -6.0
  -3.0 -4.0
   2.0  0.0
  -5.0 -7.0
   4.0 -6.0
  -3.0  9.0
   1.0 -2.0
   1.0 -1.0  2.0 -4.0  0.0 -3.0
  -3.0  0.0  5.0 -1.0  1.0  1.0
  -7.0  5.0  0.0 -8.0  2.0 -2.0
   1.0 -2.0
   0.0  4.0
   5.0 -3.0
   1.0
Program Results
 SB10ID EXAMPLE PROGRAM RESULTS


 The controller state matrix AK is

  -39.0671    9.9293   22.2322  -27.4113   43.8655
   -6.6117    3.0006   11.0878  -11.4130   15.4269
   33.6805   -6.6934  -23.9953   14.1438  -33.4358
  -32.3191    9.7316   25.4033  -24.0473   42.0517
  -44.1655   18.7767   34.8873  -42.4369   50.8437

 The controller input matrix BK is

  -10.2905  -16.5382  -10.9782
   -4.3598   -8.7525   -5.1447
    6.5962    1.8975    6.2316
   -9.8770  -14.7041  -11.8778
   -9.6726  -22.7309  -18.2692

 The controller output matrix CK is

   -0.6647   -0.0599   -1.0376    0.5619    1.7297
   -8.4202    3.9573    7.3094   -7.6283   10.6768

 The controller matrix DK is

    0.8466    0.4979   -0.6993
   -1.2226   -4.8689   -4.5056

 The estimated condition numbers are

  0.13861D-01  0.90541D-02

Return to index