Purpose
To compute the matrices of the H2 optimal n-state controller | AK | BK | K = |----|----| | CK | DK | for the system | A | B1 B2 | | A | B | P = |----|---------| = |---|---| , | C1 | 0 D12 | | C | D | | C2 | D21 D22 | where B2 has as column size the number of control inputs (NCON) and C2 has as row size the number of measurements (NMEAS) being provided to the controller. It is assumed that (A1) (A,B2) is stabilizable and (C2,A) is detectable, (A2) The block D11 of D is zero, (A3) D12 is full column rank and D21 is full row rank.Specification
SUBROUTINE SB10HD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC, $ D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, $ RCOND, TOL, IWORK, DWORK, LDWORK, BWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, $ LDDK, LDWORK, M, N, NCON, NMEAS, NP DOUBLE PRECISION TOL C .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ), $ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ), $ D( LDD, * ), DK( LDDK, * ), DWORK( * ), $ RCOND( 4 )Arguments
Input/Output Parameters
N (input) INTEGER The order of the system. N >= 0. M (input) INTEGER The column size of the matrix B. M >= 0. NP (input) INTEGER The row size of the matrix C. NP >= 0. NCON (input) INTEGER The number of control inputs (M2). M >= NCON >= 0, NP-NMEAS >= NCON. NMEAS (input) INTEGER The number of measurements (NP2). NP >= NMEAS >= 0, M-NCON >= NMEAS. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the system state matrix A. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,M) The leading N-by-M part of this array must contain the system input matrix B. LDB INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input) DOUBLE PRECISION array, dimension (LDC,N) The leading NP-by-N part of this array must contain the system output matrix C. LDC INTEGER The leading dimension of the array C. LDC >= max(1,NP). D (input) DOUBLE PRECISION array, dimension (LDD,M) The leading NP-by-M part of this array must contain the system input/output matrix D. LDD INTEGER The leading dimension of the array D. LDD >= max(1,NP). AK (output) DOUBLE PRECISION array, dimension (LDAK,N) The leading N-by-N part of this array contains the controller state matrix AK. LDAK INTEGER The leading dimension of the array AK. LDAK >= max(1,N). BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS) The leading N-by-NMEAS part of this array contains the controller input matrix BK. LDBK INTEGER The leading dimension of the array BK. LDBK >= max(1,N). CK (output) DOUBLE PRECISION array, dimension (LDCK,N) The leading NCON-by-N part of this array contains the controller output matrix CK. LDCK INTEGER The leading dimension of the array CK. LDCK >= max(1,NCON). DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS) The leading NCON-by-NMEAS part of this array contains the controller input/output matrix DK. LDDK INTEGER The leading dimension of the array DK. LDDK >= max(1,NCON). RCOND (output) DOUBLE PRECISION array, dimension (4) RCOND(1) contains the reciprocal condition number of the control transformation matrix; RCOND(2) contains the reciprocal condition number of the measurement transformation matrix; RCOND(3) contains an estimate of the reciprocal condition number of the X-Riccati equation; RCOND(4) contains an estimate of the reciprocal condition number of the Y-Riccati equation.Tolerances
TOL DOUBLE PRECISION Tolerance used for controlling the accuracy of the applied transformations for computing the normalized form in SLICOT Library routine SB10UD. Transformation matrices whose reciprocal condition numbers are less than TOL are not allowed. If TOL <= 0, then a default value equal to sqrt(EPS) is used, where EPS is the relative machine precision.Workspace
IWORK INTEGER array, dimension (max(2*N,N*N)) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) contains the optimal LDWORK. LDWORK INTEGER The dimension of the array DWORK. LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 + max(max(M2 + NP1*NP1 + max(NP1*N,3*M2+NP1,5*M2), NP2 + M1*M1 + max(M1*N,3*NP2+M1,5*NP2), N*M2,NP2*N,NP2*M2,1), N*(14*N+12+M2+NP2)+5), where M1 = M - M2 and NP1 = NP - NP2. For good performance, LDWORK must generally be larger. Denoting Q = max(M1,M2,NP1,NP2), an upper bound is 2*Q*(3*Q+2*N)+max(1,Q*(Q+max(N,5)+1),N*(14*N+12+2*Q)+5). BWORK LOGICAL array, dimension (2*N)Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: if the matrix D12 had not full column rank in respect to the tolerance TOL; = 2: if the matrix D21 had not full row rank in respect to the tolerance TOL; = 3: if the singular value decomposition (SVD) algorithm did not converge (when computing the SVD of one of the matrices D12 or D21). = 4: if the X-Riccati equation was not solved successfully; = 5: if the Y-Riccati equation was not solved successfully.Method
The routine implements the formulas given in [1], [2].References
[1] Zhou, K., Doyle, J.C., and Glover, K. Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ, 1996. [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and Smith, R. mu-Analysis and Synthesis Toolbox. The MathWorks Inc., Natick, Mass., 1995.Numerical Aspects
The accuracy of the result depends on the condition numbers of the input and output transformations and on the condition numbers of the two Riccati equations, as given by the values of RCOND(1), RCOND(2), RCOND(3) and RCOND(4), respectively.Further Comments
NoneExample
Program Text
* SB10HD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10 ) INTEGER LDA, LDB, LDC, LDD, LDAK, LDBK, LDCK, LDDK PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX, $ LDAK = NMAX, LDBK = NMAX, LDCK = PMAX, $ LDDK = PMAX ) INTEGER LIWORK PARAMETER ( LIWORK = MAX( 2*NMAX, NMAX*NMAX ) ) INTEGER MPMX PARAMETER ( MPMX = MAX( MMAX, PMAX ) ) INTEGER LDWORK PARAMETER ( LDWORK = 2*MPMX*( 2*NMAX + 3*MPMX ) + $ MAX( MPMX*( MPMX + MAX( NMAX, 5 ) + 1 ), $ NMAX*( 14*NMAX + 12 + 2*MPMX ) + 5 ) ) * .. Local Scalars .. DOUBLE PRECISION TOL INTEGER I, INFO, J, M, N, NCON, NMEAS, NP * .. Local Arrays .. LOGICAL BWORK(2*NMAX) INTEGER IWORK(LIWORK) DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX), $ BK(LDBK,MMAX), C(LDC,NMAX), CK(LDCK,NMAX), $ D(LDD,MMAX), DK(LDDK,MMAX), DWORK(LDWORK), $ RCOND( 4 ) * .. External Subroutines .. EXTERNAL SB10HD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, NP, NCON, NMEAS IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99990 ) N ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99989 ) M ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99988 ) NP ELSE IF ( NCON.LT.0 .OR. NCON.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99987 ) NCON ELSE IF ( NMEAS.LT.0 .OR. NMEAS.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99986 ) NMEAS ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N ) READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP ) READ ( NIN, FMT = * ) TOL * Compute the optimal H2 controller CALL SB10HD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, $ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, $ DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK, $ BWORK, INFO ) * IF ( INFO.EQ.0 ) THEN WRITE ( NOUT, FMT = 99997 ) DO 10 I = 1, N WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,N ) 10 CONTINUE WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NMEAS ) 20 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 30 I = 1, NCON WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,N ) 30 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 40 I = 1, NCON WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NMEAS ) 40 CONTINUE WRITE( NOUT, FMT = 99993 ) WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 4 ) ELSE WRITE( NOUT, FMT = 99998 ) INFO END IF END IF STOP * 99999 FORMAT (' SB10HD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (/' INFO on exit from SB10HD =',I2) 99997 FORMAT (' The controller state matrix AK is'/) 99996 FORMAT (/' The controller input matrix BK is'/) 99995 FORMAT (/' The controller output matrix CK is'/) 99994 FORMAT (/' The controller matrix DK is'/) 99993 FORMAT (/' The estimated condition numbers are'/) 99992 FORMAT (6(1X,F10.4)) 99991 FORMAT (5(1X,D12.5)) 99990 FORMAT (/' N is out of range.',/' N = ',I5) 99989 FORMAT (/' M is out of range.',/' M = ',I5) 99988 FORMAT (/' N is out of range.',/' N = ',I5) 99987 FORMAT (/' NCON is out of range.',/' NCON = ',I5) 99986 FORMAT (/' NMEAS is out of range.',/' NMEAS = ',I5) ENDProgram Data
SB10HD EXAMPLE PROGRAM DATA 6 5 5 2 2 -1.0 0.0 4.0 5.0 -3.0 -2.0 -2.0 4.0 -7.0 -2.0 0.0 3.0 -6.0 9.0 -5.0 0.0 2.0 -1.0 -8.0 4.0 7.0 -1.0 -3.0 0.0 2.0 5.0 8.0 -9.0 1.0 -4.0 3.0 -5.0 8.0 0.0 2.0 -6.0 -3.0 -4.0 -2.0 1.0 0.0 2.0 0.0 1.0 -5.0 2.0 -5.0 -7.0 0.0 7.0 -2.0 4.0 -6.0 1.0 1.0 -2.0 -3.0 9.0 -8.0 0.0 5.0 1.0 -2.0 3.0 -6.0 -2.0 1.0 -1.0 2.0 -4.0 0.0 -3.0 -3.0 0.0 5.0 -1.0 1.0 1.0 -7.0 5.0 0.0 -8.0 2.0 -2.0 9.0 -3.0 4.0 0.0 3.0 7.0 0.0 1.0 -2.0 1.0 -6.0 -2.0 0.0 0.0 0.0 -4.0 -1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 3.0 1.0 0.0 1.0 -3.0 -2.0 0.0 1.0 7.0 1.0 0.00000001Program Results
SB10HD EXAMPLE PROGRAM RESULTS The controller state matrix AK is 88.0015 -145.7298 -46.2424 82.2168 -45.2996 -31.1407 25.7489 -31.4642 -12.4198 9.4625 -3.5182 2.7056 54.3008 -102.4013 -41.4968 50.8412 -20.1286 -26.7191 108.1006 -198.0785 -45.4333 70.3962 -25.8591 -37.2741 -115.8900 226.1843 47.2549 -47.8435 -12.5004 34.7474 59.0362 -101.8471 -20.1052 36.7834 -16.1063 -26.4309 The controller input matrix BK is 3.7345 3.4758 -0.3020 0.6530 3.4735 4.0499 4.3198 7.2755 -3.9424 -10.5942 2.1784 2.5048 The controller output matrix CK is -2.3346 3.2556 0.7150 -0.9724 0.6962 0.4074 7.6899 -8.4558 -2.9642 7.0365 -4.2844 0.1390 The controller matrix DK is 0.0000 0.0000 0.0000 0.0000 The estimated condition numbers are 0.23570D+00 0.26726D+00 0.22747D-01 0.21130D-02