Purpose
To compute the matrices of an H-infinity (sub)optimal n-state controller | AK | BK | K = |----|----|, | CK | DK | using modified Glover's and Doyle's 1988 formulas, for the system | A | B1 B2 | | A | B | P = |----|---------| = |---|---| | C1 | D11 D12 | | C | D | | C2 | D21 D22 | and for a given value of gamma, where B2 has as column size the number of control inputs (NCON) and C2 has as row size the number of measurements (NMEAS) being provided to the controller. It is assumed that (A1) (A,B2) is stabilizable and (C2,A) is detectable, (A2) D12 is full column rank and D21 is full row rank, (A3) | A-j*omega*I B2 | has full column rank for all omega, | C1 D12 | (A4) | A-j*omega*I B1 | has full row rank for all omega. | C2 D21 |Specification
SUBROUTINE SB10FD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB, $ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, $ DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK, $ BWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, $ LDDK, LDWORK, M, N, NCON, NMEAS, NP DOUBLE PRECISION GAMMA, TOL C .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ), $ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ), $ D( LDD, * ), DK( LDDK, * ), DWORK( * ), $ RCOND( 4 )Arguments
Input/Output Parameters
N (input) INTEGER The order of the system. N >= 0. M (input) INTEGER The column size of the matrix B. M >= 0. NP (input) INTEGER The row size of the matrix C. NP >= 0. NCON (input) INTEGER The number of control inputs (M2). M >= NCON >= 0, NP-NMEAS >= NCON. NMEAS (input) INTEGER The number of measurements (NP2). NP >= NMEAS >= 0, M-NCON >= NMEAS. GAMMA (input) DOUBLE PRECISION The value of gamma. It is assumed that gamma is sufficiently large so that the controller is admissible. GAMMA >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the system state matrix A. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,M) The leading N-by-M part of this array must contain the system input matrix B. LDB INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input) DOUBLE PRECISION array, dimension (LDC,N) The leading NP-by-N part of this array must contain the system output matrix C. LDC INTEGER The leading dimension of the array C. LDC >= max(1,NP). D (input) DOUBLE PRECISION array, dimension (LDD,M) The leading NP-by-M part of this array must contain the system input/output matrix D. LDD INTEGER The leading dimension of the array D. LDD >= max(1,NP). AK (output) DOUBLE PRECISION array, dimension (LDAK,N) The leading N-by-N part of this array contains the controller state matrix AK. LDAK INTEGER The leading dimension of the array AK. LDAK >= max(1,N). BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS) The leading N-by-NMEAS part of this array contains the controller input matrix BK. LDBK INTEGER The leading dimension of the array BK. LDBK >= max(1,N). CK (output) DOUBLE PRECISION array, dimension (LDCK,N) The leading NCON-by-N part of this array contains the controller output matrix CK. LDCK INTEGER The leading dimension of the array CK. LDCK >= max(1,NCON). DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS) The leading NCON-by-NMEAS part of this array contains the controller input/output matrix DK. LDDK INTEGER The leading dimension of the array DK. LDDK >= max(1,NCON). RCOND (output) DOUBLE PRECISION array, dimension (4) RCOND(1) contains the reciprocal condition number of the control transformation matrix; RCOND(2) contains the reciprocal condition number of the measurement transformation matrix; RCOND(3) contains an estimate of the reciprocal condition number of the X-Riccati equation; RCOND(4) contains an estimate of the reciprocal condition number of the Y-Riccati equation.Tolerances
TOL DOUBLE PRECISION Tolerance used for controlling the accuracy of the applied transformations for computing the normalized form in SLICOT Library routine SB10PD. Transformation matrices whose reciprocal condition numbers are less than TOL are not allowed. If TOL <= 0, then a default value equal to sqrt(EPS) is used, where EPS is the relative machine precision.Workspace
IWORK INTEGER array, dimension (LIWORK), where LIWORK = max(2*max(N,M-NCON,NP-NMEAS,NCON),N*N) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) contains the optimal LDWORK. LDWORK INTEGER The dimension of the array DWORK. LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 + max(1,LW1,LW2,LW3,LW4,LW5,LW6), where LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2)), LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2)), LW3 = M2 + NP1*NP1 + max(NP1*max(N,M1),3*M2+NP1,5*M2), LW4 = NP2 + M1*M1 + max(max(N,NP1)*M1,3*NP2+M1,5*NP2), LW5 = 2*N*N + N*(M+NP) + max(1,M*M + max(2*M1,3*N*N+max(N*M,10*N*N+12*N+5)), NP*NP + max(2*NP1,3*N*N + max(N*NP,10*N*N+12*N+5))), LW6 = 2*N*N + N*(M+NP) + max(1, M2*NP2 + NP2*NP2 + M2*M2 + max(D1*D1 + max(2*D1, (D1+D2)*NP2), D2*D2 + max(2*D2, D2*M2), 3*N, N*(2*NP2 + M2) + max(2*N*M2, M2*NP2 + max(M2*M2+3*M2, NP2*(2*NP2+ M2+max(NP2,N)))))), with D1 = NP1 - M2, D2 = M1 - NP2, NP1 = NP - NP2, M1 = M - M2. For good performance, LDWORK must generally be larger. Denoting Q = max(M1,M2,NP1,NP2), an upper bound is 2*Q*(3*Q+2*N)+max(1,(N+Q)*(N+Q+6),Q*(Q+max(N,Q,5)+1), 2*N*(N+2*Q)+max(1,4*Q*Q+ max(2*Q,3*N*N+max(2*N*Q,10*N*N+12*N+5)), Q*(3*N+3*Q+max(2*N,4*Q+max(N,Q))))). BWORK LOGICAL array, dimension (2*N)Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: if the matrix | A-j*omega*I B2 | had not full | C1 D12 | column rank in respect to the tolerance EPS; = 2: if the matrix | A-j*omega*I B1 | had not full row | C2 D21 | rank in respect to the tolerance EPS; = 3: if the matrix D12 had not full column rank in respect to the tolerance TOL; = 4: if the matrix D21 had not full row rank in respect to the tolerance TOL; = 5: if the singular value decomposition (SVD) algorithm did not converge (when computing the SVD of one of the matrices |A B2 |, |A B1 |, D12 or D21). |C1 D12| |C2 D21| = 6: if the controller is not admissible (too small value of gamma); = 7: if the X-Riccati equation was not solved successfully (the controller is not admissible or there are numerical difficulties); = 8: if the Y-Riccati equation was not solved successfully (the controller is not admissible or there are numerical difficulties); = 9: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is zero [3].Method
The routine implements the Glover's and Doyle's 1988 formulas [1], [2] modified to improve the efficiency as described in [3].References
[1] Glover, K. and Doyle, J.C. State-space formulae for all stabilizing controllers that satisfy an Hinf norm bound and relations to risk sensitivity. Systems and Control Letters, vol. 11, pp. 167-172, 1988. [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and Smith, R. mu-Analysis and Synthesis Toolbox. The MathWorks Inc., Natick, Mass., 1995. [3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M. Fortran 77 routines for Hinf and H2 design of continuous-time linear control systems. Rep. 98-14, Department of Engineering, Leicester University, Leicester, U.K., 1998.Numerical Aspects
The accuracy of the result depends on the condition numbers of the input and output transformations and on the condition numbers of the two Riccati equations, as given by the values of RCOND(1), RCOND(2), RCOND(3) and RCOND(4), respectively.Further Comments
NoneExample
Program Text
* SB10FD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX, N2MAX PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10, N2MAX = 20 ) INTEGER LDA, LDB, LDC, LDD, LDAK, LDBK, LDCK, LDDK, $ LDAC, LDBC, LDCC, LDDC PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX, $ LDAK = NMAX, LDBK = NMAX, LDCK = MMAX, $ LDDK = MMAX, LDAC = 2*NMAX, LDBC = 2*NMAX, $ LDCC = PMAX, LDDC = PMAX ) INTEGER LIWORK PARAMETER ( LIWORK = MAX( 2*MAX( NMAX, MMAX, PMAX ), $ NMAX*NMAX ) ) INTEGER MPMX PARAMETER ( MPMX = MAX( MMAX, PMAX ) ) INTEGER LDWORK PARAMETER ( LDWORK = 2*MPMX*( 3*MPMX + 2*NMAX ) + $ MAX( ( NMAX + MPMX )*( NMAX + MPMX + 6 ), $ MPMX*( MPMX + MAX( NMAX, MPMX, 5 ) + 1 ), $ 2*NMAX*( NMAX + 2*MPMX ) + $ MAX( 4*MPMX*MPMX + MAX( 2*MPMX, 3*NMAX*NMAX + $ MAX( 2*NMAX*MPMX, 10*NMAX*NMAX+12*NMAX+5 ) ), $ MPMX*( 3*NMAX + 3*MPMX + $ MAX( 2*NMAX, 4*MPMX + $ MAX( NMAX, MPMX ) ) ) ) ) ) * .. Local Scalars .. INTEGER SDIM LOGICAL SELECT DOUBLE PRECISION GAMMA, TOL INTEGER I, INFO1, INFO2, INFO3, J, M, N, NCON, NMEAS, NP * .. Local Arrays .. LOGICAL BWORK(N2MAX) INTEGER IWORK(LIWORK) DOUBLE PRECISION A(LDA,NMAX), AK(LDAK,NMAX), AC(LDAC,N2MAX), $ B(LDB,MMAX), BK(LDBK,PMAX), BC(LDBC,MMAX), $ C(LDC,NMAX), CK(LDCK,NMAX), CC(LDCC,N2MAX), $ D(LDD,MMAX), DK(LDDK,PMAX), DC(LDDC,MMAX), $ DWORK(LDWORK), RCOND( 4 ) * .. External Subroutines .. EXTERNAL SB10FD, SB10LD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, NP, NCON, NMEAS IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99987 ) N ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99986 ) M ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99985 ) NP ELSE IF ( NCON.LT.0 .OR. NCON.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99984 ) NCON ELSE IF ( NMEAS.LT.0 .OR. NMEAS.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99983 ) NMEAS ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N ) READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP ) READ ( NIN, FMT = * ) GAMMA, TOL * Compute the suboptimal controller CALL SB10FD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB, $ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, $ DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK, $ BWORK, INFO1 ) * IF ( INFO1.EQ.0 ) THEN WRITE ( NOUT, FMT = 99996 ) DO 10 I = 1, N WRITE ( NOUT, FMT = 99989 ) ( AK(I,J), J = 1,N ) 10 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99989 ) ( BK(I,J), J = 1,NMEAS ) 20 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 30 I = 1, NCON WRITE ( NOUT, FMT = 99989 ) ( CK(I,J), J = 1,N ) 30 CONTINUE WRITE ( NOUT, FMT = 99993 ) DO 40 I = 1, NCON WRITE ( NOUT, FMT = 99989 ) ( DK(I,J), J = 1,NMEAS ) 40 CONTINUE WRITE( NOUT, FMT = 99992 ) WRITE( NOUT, FMT = 99988 ) ( RCOND(I), I = 1, 4 ) * Compute the closed-loop matrices CALL SB10LD(N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC, $ D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, $ AC, LDAC, BC, LDBC, CC, LDCC, DC, LDDC, IWORK, $ DWORK, LDWORK, INFO2 ) * IF ( INFO2.EQ.0 ) THEN * Compute the closed-loop poles CALL DGEES( 'N','N', SELECT, 2*N, AC, LDAC, SDIM, $ DWORK(1), DWORK(2*N+1), DWORK, 2*N, $ DWORK(4*N+1), LDWORK-4*N, BWORK, INFO3) * IF( INFO3.EQ.0 ) THEN WRITE( NOUT, FMT = 99991 ) WRITE( NOUT, FMT = 99988 ) (DWORK(I), I =1, 2*N) WRITE( NOUT, FMT = 99990 ) WRITE( NOUT, FMT = 99988 ) (DWORK(2*N+I), I =1, 2*N) ELSE WRITE( NOUT, FMT = 99996 ) INFO3 END IF ELSE WRITE( NOUT, FMT = 99997 ) INFO2 END IF ELSE WRITE( NOUT, FMT = 99998 ) INFO1 END IF END IF STOP * 99999 FORMAT (' SB10FD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (/' INFO on exit from SB10FD =',I2) 99997 FORMAT (/' INFO on exit from SB10LD =',I2) 99996 FORMAT (' The controller state matrix AK is'/) 99995 FORMAT (/' The controller input matrix BK is'/) 99994 FORMAT (/' The controller output matrix CK is'/) 99993 FORMAT (/' The controller matrix DK is'/) 99992 FORMAT (/' The estimated condition numbers are'/) 99991 FORMAT (/' The real parts of the closed-loop system poles are'/) 99990 FORMAT (/' The imaginary parts of the closed-loop system', $ ' poles are'/) 99989 FORMAT (10(1X,F8.4)) 99988 FORMAT ( 5(1X,D12.5)) 99987 FORMAT (/' N is out of range.',/' N = ',I5) 99986 FORMAT (/' M is out of range.',/' M = ',I5) 99985 FORMAT (/' N is out of range.',/' N = ',I5) 99984 FORMAT (/' NCON is out of range.',/' NCON = ',I5) 99983 FORMAT (/' NMEAS is out of range.',/' NMEAS = ',I5) ENDProgram Data
SB10FD EXAMPLE PROGRAM DATA 6 5 5 2 2 -1.0 0.0 4.0 5.0 -3.0 -2.0 -2.0 4.0 -7.0 -2.0 0.0 3.0 -6.0 9.0 -5.0 0.0 2.0 -1.0 -8.0 4.0 7.0 -1.0 -3.0 0.0 2.0 5.0 8.0 -9.0 1.0 -4.0 3.0 -5.0 8.0 0.0 2.0 -6.0 -3.0 -4.0 -2.0 1.0 0.0 2.0 0.0 1.0 -5.0 2.0 -5.0 -7.0 0.0 7.0 -2.0 4.0 -6.0 1.0 1.0 -2.0 -3.0 9.0 -8.0 0.0 5.0 1.0 -2.0 3.0 -6.0 -2.0 1.0 -1.0 2.0 -4.0 0.0 -3.0 -3.0 0.0 5.0 -1.0 1.0 1.0 -7.0 5.0 0.0 -8.0 2.0 -2.0 9.0 -3.0 4.0 0.0 3.0 7.0 0.0 1.0 -2.0 1.0 -6.0 -2.0 1.0 -2.0 -3.0 0.0 0.0 0.0 4.0 0.0 1.0 0.0 5.0 -3.0 -4.0 0.0 1.0 0.0 1.0 0.0 1.0 -3.0 0.0 0.0 1.0 7.0 1.0 15.0 0.00000001Program Results
SB10FD EXAMPLE PROGRAM RESULTS The controller state matrix AK is -2.8043 14.7367 4.6658 8.1596 0.0848 2.5290 4.6609 3.2756 -3.5754 -2.8941 0.2393 8.2920 -15.3127 23.5592 -7.1229 2.7599 5.9775 -2.0285 -22.0691 16.4758 12.5523 -16.3602 4.4300 -3.3168 30.6789 -3.9026 -1.3868 26.2357 -8.8267 10.4860 -5.7429 0.0577 10.8216 -11.2275 1.5074 -10.7244 The controller input matrix BK is -0.1581 -0.0793 -0.9237 -0.5718 0.7984 0.6627 0.1145 0.1496 -0.6743 -0.2376 0.0196 -0.7598 The controller output matrix CK is -0.2480 -0.1713 -0.0880 0.1534 0.5016 -0.0730 2.8810 -0.3658 1.3007 0.3945 1.2244 2.5690 The controller matrix DK is 0.0554 0.1334 -0.3195 0.0333 The estimated condition numbers are 0.10000D+01 0.10000D+01 0.11241D-01 0.80492D-03 The real parts of the closed-loop system poles are -0.10731D+03 -0.66556D+02 -0.38269D+02 -0.38269D+02 -0.20089D+02 -0.62557D+01 -0.62557D+01 -0.32405D+01 -0.32405D+01 -0.17178D+01 -0.41466D+01 -0.76437D+01 The imaginary parts of the closed-loop system poles are 0.00000D+00 0.00000D+00 0.13114D+02 -0.13114D+02 0.00000D+00 0.12961D+02 -0.12961D+02 0.67998D+01 -0.67998D+01 0.00000D+00 0.00000D+00 0.00000D+00