SB10ED

H2 optimal state controller for a discrete-time system

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the matrices of the H2 optimal n-state controller

                        | AK | BK |
                    K = |----|----|
                        | CK | DK |

  for the discrete-time system

                | A  | B1  B2  |   | A | B |
            P = |----|---------| = |---|---| ,
                | C1 |  0  D12 |   | C | D |
                | C2 | D21 D22 |

  where B2 has as column size the number of control inputs (NCON)
  and C2 has as row size the number of measurements (NMEAS) being
  provided to the controller.

  It is assumed that

  (A1) (A,B2) is stabilizable and (C2,A) is detectable,

  (A2) D12 is full column rank and D21 is full row rank,

            j*Theta
  (A3) | A-e       *I  B2  | has full column rank for all
       |    C1         D12 |

       0 <= Theta < 2*Pi ,

            j*Theta
  (A4) | A-e       *I  B1  |  has full row rank for all
       |    C2         D21 |

       0 <= Theta < 2*Pi .

Specification
      SUBROUTINE SB10ED( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK,
     $                   RCOND, TOL, IWORK, DWORK, LDWORK, BWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
     $                   LDDK, LDWORK, M, N, NCON, NMEAS, NP
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
     $                   BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
     $                   D( LDD, * ), DK( LDDK, * ), DWORK( * ),
     $                   RCOND( * )
      LOGICAL            BWORK( * )

Arguments

Input/Output Parameters

  N       (input) INTEGER
          The order of the system.  N >= 0.

  M       (input) INTEGER
          The column size of the matrix B.  M >= 0.

  NP      (input) INTEGER
          The row size of the matrix C.  NP >= 0.

  NCON    (input) INTEGER
          The number of control inputs (M2).  M >= NCON >= 0,
          NP-NMEAS >= NCON.

  NMEAS   (input) INTEGER
          The number of measurements (NP2).  NP >= NMEAS >= 0,
          M-NCON >= NMEAS.

  A       (input/worksp.) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array must contain the
          system state matrix A.
          This array is modified internally, but it is restored on
          exit.

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must contain the
          system input matrix B.

  LDB     INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading NP-by-N part of this array must contain the
          system output matrix C.

  LDC     INTEGER
          The leading dimension of the array C.  LDC >= max(1,NP).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          The leading NP-by-M part of this array must contain the
          system input/output matrix D.

  LDD     INTEGER
          The leading dimension of the array D.  LDD >= max(1,NP).

  AK      (output) DOUBLE PRECISION array, dimension (LDAK,N)
          The leading N-by-N part of this array contains the
          controller state matrix AK.

  LDAK    INTEGER
          The leading dimension of the array AK.  LDAK >= max(1,N).

  BK      (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
          The leading N-by-NMEAS part of this array contains the
          controller input matrix BK.

  LDBK    INTEGER
          The leading dimension of the array BK.  LDBK >= max(1,N).

  CK      (output) DOUBLE PRECISION array, dimension (LDCK,N)
          The leading NCON-by-N part of this array contains the
          controller output matrix CK.

  LDCK    INTEGER
          The leading dimension of the array CK.
          LDCK >= max(1,NCON).

  DK      (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
          The leading NCON-by-NMEAS part of this array contains the
          controller input/output matrix DK.

  LDDK    INTEGER
          The leading dimension of the array DK.
          LDDK >= max(1,NCON).

  RCOND   (output) DOUBLE PRECISION array, dimension (7)
          RCOND contains estimates the reciprocal condition
          numbers of the matrices which are to be inverted and the
          reciprocal condition numbers of the Riccati equations
          which have to be solved during the computation of the
          controller. (See the description of the algorithm in [2].)
          RCOND(1) contains the reciprocal condition number of the
                   control transformation matrix TU;
          RCOND(2) contains the reciprocal condition number of the
                   measurement transformation matrix TY;
          RCOND(3) contains the reciprocal condition number of the
                   matrix Im2 + B2'*X2*B2;
          RCOND(4) contains the reciprocal condition number of the
                   matrix Ip2 + C2*Y2*C2';
          RCOND(5) contains the reciprocal condition number of the
                   X-Riccati equation;
          RCOND(6) contains the reciprocal condition number of the
                   Y-Riccati equation;
          RCOND(7) contains the reciprocal condition number of the
                   matrix Im2 + DKHAT*D22 .

Tolerances
  TOL     DOUBLE PRECISION
          Tolerance used for controlling the accuracy of the
          transformations applied for diagonalizing D12 and D21,
          and for checking the nonsingularity of the matrices to be
          inverted. If TOL <= 0, then a default value equal to
          sqrt(EPS) is used, where EPS is the relative machine
          precision.

Workspace
  IWORK   INTEGER array, dimension (max(2*M2,2*N,N*N,NP2))

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) contains the optimal
          LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 +
                    max(1,LW1,LW2,LW3,LW4,LW5,LW6), where
          LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2)),
          LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2)),
          LW3 = M2 + NP1*NP1 + max(NP1*max(N,M1),3*M2+NP1,5*M2),
          LW4 = NP2 + M1*M1 + max(max(N,NP1)*M1,3*NP2+M1,5*NP2),
          LW5 = 2*N*N+max(1,14*N*N+6*N+max(14*N+23,16*N),M2*(N+M2+
                          max(3,M1)),NP2*(N+NP2+3)),
          LW6 = max(N*M2,N*NP2,M2*NP2,M2*M2+4*M2),
          with M1 = M - M2 and NP1 = NP - NP2.
          For good performance, LDWORK must generally be larger.
          Denoting Q = max(M1,M2,NP1,NP2), an upper bound is
          2*Q*(3*Q+2*N)+max(1,(N+Q)*(N+Q+6),Q*(Q+max(N,Q,5)+1),
                  2*N*N+max(1,14*N*N+6*N+max(14*N+23,16*N),
                            Q*(N+Q+max(Q,3)))).

  BWORK   LOGICAL array, dimension (2*N)

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
                                   j*Theta
          = 1:  if the matrix | A-e       *I  B2  | had not full
                              |      C1       D12 |
                column rank in respect to the tolerance EPS;
                                   j*Theta
          = 2:  if the matrix | A-e       *I  B1  |  had not full
                              |      C2       D21 |
                row rank in respect to the tolerance EPS;
          = 3:  if the matrix D12 had not full column rank in
                respect to the tolerance TOL;
          = 4:  if the matrix D21 had not full row rank in respect
                to the tolerance TOL;
          = 5:  if the singular value decomposition (SVD) algorithm
                did not converge (when computing the SVD of one of
                the matrices |A-I  B2 |, |A-I  B1 |, D12 or D21).
                             |C1   D12|  |C2   D21|
          = 6:  if the X-Riccati equation was not solved
                successfully;
          = 7:  if the matrix Im2 + B2'*X2*B2 is not positive
                definite, or it is numerically singular (with
                respect to the tolerance TOL);
          = 8:  if the Y-Riccati equation was not solved
                successfully;
          = 9:  if the matrix Ip2 + C2*Y2*C2' is not positive
                definite, or it is numerically singular (with
                respect to the tolerance TOL);
          =10:  if the matrix Im2 + DKHAT*D22 is singular, or its
                estimated condition number is larger than or equal
                to 1/TOL.

Method
  The routine implements the formulas given in [1].

References
  [1] Zhou, K., Doyle, J.C., and Glover, K.
      Robust and Optimal Control.
      Prentice-Hall, Upper Saddle River, NJ, 1996.

  [2] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
      Fortran 77 routines for Hinf and H2 design of linear
      discrete-time control systems.
      Report 99-8, Department of Engineering, Leicester University,
      April 1999.

Numerical Aspects
  The accuracy of the result depends on the condition numbers of the
  matrices which are to be inverted and on the condition numbers of
  the matrix Riccati equations which are to be solved in the
  computation of the controller. (The corresponding reciprocal
  condition numbers are given in the output array RCOND.)

Further Comments
  None
Example

Program Text

*     SB10ED EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 10, MMAX = 10, PMAX = 10 )
      INTEGER          LDA, LDB, LDC, LDD, LDAK, LDBK, LDCK, LDDK
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX,
     $                   LDAK = NMAX, LDBK = NMAX, LDCK = PMAX,
     $                   LDDK = PMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = MAX( 2*MMAX, PMAX, 2*NMAX,
     $                                 NMAX*NMAX ) )
      INTEGER          MPMX
      PARAMETER        ( MPMX = MAX( MMAX, PMAX ) )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 2*MPMX*( 3*MPMX + 2*NMAX ) +
     $                   MAX( ( NMAX + MPMX )*( NMAX + MPMX + 6 ),
     $                   MPMX*( MPMX + MAX( NMAX, MPMX, 5 ) + 1 ),
     $                   2*NMAX*NMAX + MAX( 14*NMAX*NMAX + 6*NMAX +
     $                   MAX( 14*NMAX + 23, 16*NMAX ),
     $                   MPMX*( NMAX + MPMX + MAX( MPMX, 3 ) ) ) ) )
*     .. Local Scalars ..
      DOUBLE PRECISION TOL
      INTEGER          I, INFO, J, M, N, NCON, NMEAS, NP
*     .. Local Arrays ..
      LOGICAL          BWORK(2*NMAX)
      INTEGER          IWORK(LIWORK)
      DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX),
     $                 BK(LDBK,MMAX), C(LDC,NMAX), CK(LDCK,NMAX),
     $                 D(LDD,MMAX), DK(LDDK,MMAX), DWORK(LDWORK),
     $                 RCOND( 8 )
*     .. External Subroutines ..
      EXTERNAL         SB10ED
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, NP, NCON, NMEAS
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99989 ) M
      ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) NP
      ELSE IF ( NCON.LT.0 .OR. NCON.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99987 ) NCON
      ELSE IF ( NMEAS.LT.0 .OR. NMEAS.GT.PMAX ) THEN
         WRITE ( NOUT, FMT = 99986 ) NMEAS
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
         READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
         READ ( NIN, FMT = * ) TOL
         CALL SB10ED( N, M, NP, NCON, NMEAS, A, LDA, B, LDB,
     $                C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK,
     $                DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK,
     $                BWORK, INFO )
         IF ( INFO.EQ.0 ) THEN
            WRITE ( NOUT, FMT = 99997 )
            DO 10 I = 1, N
               WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,N )
   10       CONTINUE
            WRITE ( NOUT, FMT = 99996 )
            DO 20 I = 1, N
               WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NMEAS )
   20       CONTINUE
            WRITE ( NOUT, FMT = 99995 )
            DO 30 I = 1, NCON
               WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,N )
   30       CONTINUE
            WRITE ( NOUT, FMT = 99994 )
            DO 40 I = 1, NCON
               WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NMEAS )
   40       CONTINUE
            WRITE( NOUT, FMT = 99993 )
            WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 7 )
         ELSE
            WRITE( NOUT, FMT = 99998 ) INFO
         END IF
      END IF
      STOP
*
99999 FORMAT (' SB10ED EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from SB10ED =',I2)
99997 FORMAT (' The controller state matrix AK is'/)
99996 FORMAT (/' The controller input matrix BK is'/)
99995 FORMAT (/' The controller output matrix CK is'/)
99994 FORMAT (/' The controller matrix DK is'/)
99993 FORMAT (/' The estimated condition numbers are'/)
99992 FORMAT (10(1X,F8.4))
99991 FORMAT ( 5(1X,D12.5))
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' NCON is out of range.',/' NCON = ',I5)
99986 FORMAT (/' NMEAS is out of range.',/' NMEAS = ',I5)
      END
Program Data
 SB10ED EXAMPLE PROGRAM DATA
   6     5     5     2     2
  -0.7  0.0  0.3  0.0 -0.5 -0.1
  -0.6  0.2 -0.4 -0.3  0.0  0.0
  -0.5  0.7 -0.1  0.0  0.0 -0.8
  -0.7  0.0  0.0 -0.5 -1.0  0.0
   0.0  0.3  0.6 -0.9  0.1 -0.4
   0.5 -0.8  0.0  0.0  0.2 -0.9
  -1.0 -2.0 -2.0  1.0  0.0
   1.0  0.0  1.0 -2.0  1.0
  -3.0 -4.0  0.0  2.0 -2.0
   1.0 -2.0  1.0  0.0 -1.0
   0.0  1.0 -2.0  0.0  3.0
   1.0  0.0  3.0 -1.0 -2.0
   1.0 -1.0  2.0 -2.0  0.0 -3.0
  -3.0  0.0  1.0 -1.0  1.0  0.0
   0.0  2.0  0.0 -4.0  0.0 -2.0
   1.0 -3.0  0.0  0.0  3.0  1.0
   0.0  1.0 -2.0  1.0  0.0 -2.0
   1.0 -1.0 -2.0  0.0  0.0
   0.0  1.0  0.0  1.0  0.0
   2.0 -1.0 -3.0  0.0  1.0
   0.0  1.0  0.0  1.0 -1.0
   0.0  0.0  1.0  2.0  1.0
   0.00000001
Program Results
 SB10ED EXAMPLE PROGRAM RESULTS

 The controller state matrix AK is

  -0.0551  -2.1891  -0.6607  -0.2532   0.6674  -1.0044
  -1.0379   2.3804   0.5031   0.3960  -0.6605   1.2673
  -0.0876  -2.1320  -0.4701  -1.1461   1.2927  -1.5116
  -0.1358  -2.1237  -0.9560  -0.7144   0.6673  -0.7957
   0.4900   0.0895   0.2634  -0.2354   0.1623  -0.2663
   0.1672  -0.4163   0.2871  -0.1983   0.4944  -0.6967

 The controller input matrix BK is

  -0.5985  -0.5464
   0.5285   0.6087
  -0.7600  -0.4472
  -0.7288  -0.6090
   0.0532   0.0658
  -0.0663   0.0059

 The controller output matrix CK is

   0.2500  -1.0200  -0.3371  -0.2733   0.2747  -0.4444
   0.0654   0.2095   0.0632   0.2089  -0.1895   0.1834

 The controller matrix DK is

  -0.2181  -0.2070
   0.1094   0.1159

 The estimated condition numbers are

  0.10000D+01  0.10000D+01  0.25207D+00  0.83985D-01  0.48628D-02
  0.55015D-03  0.49886D+00

Return to index