Purpose
To compute the matrices of an H-infinity (sub)optimal n-state controller | AK | BK | K = |----|----|, | CK | DK | for the discrete-time system | A | B1 B2 | | A | B | P = |----|---------| = |---|---| | C1 | D11 D12 | | C | D | | C2 | D21 D22 | and for a given value of gamma, where B2 has as column size the number of control inputs (NCON) and C2 has as row size the number of measurements (NMEAS) being provided to the controller. It is assumed that (A1) (A,B2) is stabilizable and (C2,A) is detectable, (A2) D12 is full column rank and D21 is full row rank, j*Theta (A3) | A-e *I B2 | has full column rank for all | C1 D12 | 0 <= Theta < 2*Pi , j*Theta (A4) | A-e *I B1 | has full row rank for all | C2 D21 | 0 <= Theta < 2*Pi .Specification
SUBROUTINE SB10DD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB, $ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, $ DK, LDDK, X, LDX, Z, LDZ, RCOND, TOL, IWORK, $ DWORK, LDWORK, BWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, $ LDDK, LDWORK, LDX, LDZ, M, N, NCON, NMEAS, NP DOUBLE PRECISION GAMMA, TOL C .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ), $ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ), $ D( LDD, * ), DK( LDDK, * ), DWORK( * ), $ RCOND( * ), X( LDX, * ), Z( LDZ, * ) LOGICAL BWORK( * )Arguments
Input/Output Parameters
N (input) INTEGER The order of the system. N >= 0. M (input) INTEGER The column size of the matrix B. M >= 0. NP (input) INTEGER The row size of the matrix C. NP >= 0. NCON (input) INTEGER The number of control inputs (M2). M >= NCON >= 0, NP-NMEAS >= NCON. NMEAS (input) INTEGER The number of measurements (NP2). NP >= NMEAS >= 0, M-NCON >= NMEAS. GAMMA (input) DOUBLE PRECISION The value of gamma. It is assumed that gamma is sufficiently large so that the controller is admissible. GAMMA > 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the system state matrix A. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,M) The leading N-by-M part of this array must contain the system input matrix B. LDB INTEGER The leading dimension of the array B. LDB >= max(1,N). C (input) DOUBLE PRECISION array, dimension (LDC,N) The leading NP-by-N part of this array must contain the system output matrix C. LDC INTEGER The leading dimension of the array C. LDC >= max(1,NP). D (input) DOUBLE PRECISION array, dimension (LDD,M) The leading NP-by-M part of this array must contain the system input/output matrix D. LDD INTEGER The leading dimension of the array D. LDD >= max(1,NP). AK (output) DOUBLE PRECISION array, dimension (LDAK,N) The leading N-by-N part of this array contains the controller state matrix AK. LDAK INTEGER The leading dimension of the array AK. LDAK >= max(1,N). BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS) The leading N-by-NMEAS part of this array contains the controller input matrix BK. LDBK INTEGER The leading dimension of the array BK. LDBK >= max(1,N). CK (output) DOUBLE PRECISION array, dimension (LDCK,N) The leading NCON-by-N part of this array contains the controller output matrix CK. LDCK INTEGER The leading dimension of the array CK. LDCK >= max(1,NCON). DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS) The leading NCON-by-NMEAS part of this array contains the controller input/output matrix DK. LDDK INTEGER The leading dimension of the array DK. LDDK >= max(1,NCON). X (output) DOUBLE PRECISION array, dimension (LDX,N) The leading N-by-N part of this array contains the matrix X, solution of the X-Riccati equation. LDX INTEGER The leading dimension of the array X. LDX >= max(1,N). Z (output) DOUBLE PRECISION array, dimension (LDZ,N) The leading N-by-N part of this array contains the matrix Z, solution of the Z-Riccati equation. LDZ INTEGER The leading dimension of the array Z. LDZ >= max(1,N). RCOND (output) DOUBLE PRECISION array, dimension (8) RCOND contains estimates of the reciprocal condition numbers of the matrices which are to be inverted and estimates of the reciprocal condition numbers of the Riccati equations which have to be solved during the computation of the controller. (See the description of the algorithm in [2].) RCOND(1) contains the reciprocal condition number of the matrix R3; RCOND(2) contains the reciprocal condition number of the matrix R1 - R2'*inv(R3)*R2; RCOND(3) contains the reciprocal condition number of the matrix V21; RCOND(4) contains the reciprocal condition number of the matrix St3; RCOND(5) contains the reciprocal condition number of the matrix V12; RCOND(6) contains the reciprocal condition number of the matrix Im2 + DKHAT*D22 RCOND(7) contains the reciprocal condition number of the X-Riccati equation; RCOND(8) contains the reciprocal condition number of the Z-Riccati equation.Tolerances
TOL DOUBLE PRECISION Tolerance used in neglecting the small singular values in rank determination. If TOL <= 0, then a default value equal to 1000*EPS is used, where EPS is the relative machine precision.Workspace
IWORK INTEGER array, dimension (max(2*max(M2,N),M,M2+NP2,N*N)) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) contains the optimal LDWORK. LDWORK INTEGER The dimension of the array DWORK. LDWORK >= max(LW1,LW2,LW3,LW4), where LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2)); LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2)); LW3 = 13*N*N + 2*M*M + N*(8*M+NP2) + M1*(M2+NP2) + 6*N + max(14*N+23,16*N,2*N+M,3*M); LW4 = 13*N*N + M*M + (8*N+M+M2+2*NP2)*(M2+NP2) + 6*N + N*(M+NP2) + max(14*N+23,16*N,2*N+M2+NP2,3*(M2+NP2)); For good performance, LDWORK must generally be larger. Denoting Q = max(M1,M2,NP1,NP2), an upper bound is max((N+Q)*(N+Q+6),13*N*N + M*M + 2*Q*Q + N*(M+Q) + max(M*(M+7*N),2*Q*(8*N+M+2*Q)) + 6*N + max(14*N+23,16*N,2*N+max(M,2*Q),3*max(M,2*Q)). BWORK LOGICAL array, dimension (2*N)Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; j*Theta = 1: if the matrix | A-e *I B2 | had not full | C1 D12 | column rank; j*Theta = 2: if the matrix | A-e *I B1 | had not full | C2 D21 | row rank; = 3: if the matrix D12 had not full column rank; = 4: if the matrix D21 had not full row rank; = 5: if the controller is not admissible (too small value of gamma); = 6: if the X-Riccati equation was not solved successfully (the controller is not admissible or there are numerical difficulties); = 7: if the Z-Riccati equation was not solved successfully (the controller is not admissible or there are numerical difficulties); = 8: if the matrix Im2 + DKHAT*D22 is singular. = 9: if the singular value decomposition (SVD) algorithm did not converge (when computing the SVD of one of the matrices |A B2 |, |A B1 |, D12 or D21). |C1 D12| |C2 D21|Method
The routine implements the method presented in [1].References
[1] Green, M. and Limebeer, D.J.N. Linear Robust Control. Prentice-Hall, Englewood Cliffs, NJ, 1995. [2] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M. Fortran 77 routines for Hinf and H2 design of linear discrete-time control systems. Report 99-8, Department of Engineering, Leicester University, April 1999.Numerical Aspects
With approaching the minimum value of gamma some of the matrices which are to be inverted tend to become ill-conditioned and the X- or Z-Riccati equation may also become ill-conditioned which may deteriorate the accuracy of the result. (The corresponding reciprocal condition numbers are given in the output array RCOND.)Further Comments
NoneExample
Program Text
* SB10DD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10 ) INTEGER LDA, LDB, LDC, LDD, LDAK, LDBK, LDCK, LDDK, LDX, $ LDZ PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX, LDD = PMAX, $ LDAK = NMAX, LDBK = NMAX, LDCK = PMAX, $ LDDK = PMAX, LDX = NMAX, LDZ = NMAX ) INTEGER LIWORK PARAMETER ( LIWORK = MAX( 2*MAX( MMAX, NMAX ), $ MMAX + PMAX, NMAX*NMAX ) ) INTEGER MPMX PARAMETER ( MPMX = MAX( MMAX, PMAX ) ) INTEGER LDWORK PARAMETER ( LDWORK = $ MAX( ( NMAX + MPMX )*( NMAX + MPMX + 6 ), $ 13*NMAX*NMAX + MMAX*MMAX + 2*MPMX*MPMX + $ NMAX*( MMAX + MPMX ) + $ MAX( MMAX*( MMAX + 7*NMAX ), $ 2*MPMX*( 8*NMAX + MMAX + 2*MPMX ) ) $ + 6*NMAX + $ MAX( 14*NMAX + 23, 16*NMAX, $ 2*NMAX + MAX( MMAX, 2*MPMX ), $ 3*MAX( MMAX, 2*MPMX ) ) ) ) * .. Local Scalars .. DOUBLE PRECISION GAMMA, TOL INTEGER I, INFO, J, M, N, NCON, NMEAS, NP * .. Local Arrays .. LOGICAL BWORK(2*NMAX) INTEGER IWORK(LIWORK) DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX), $ BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX), $ D(LDD,MMAX), DK(LDDK,PMAX), X(LDX,NMAX), $ Z(LDZ,NMAX), DWORK(LDWORK), RCOND( 8 ) * .. External Subroutines .. EXTERNAL SB10DD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, NP, NCON, NMEAS IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99990 ) N ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99989 ) M ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99988 ) NP ELSE IF ( NCON.LT.0 .OR. NCON.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99987 ) NCON ELSE IF ( NMEAS.LT.0 .OR. NMEAS.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99986 ) NMEAS ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N ) READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP ) READ ( NIN, FMT = * ) GAMMA, TOL CALL SB10DD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB, $ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, $ DK, LDDK, X, LDX, Z, LDZ, RCOND, TOL, IWORK, $ DWORK, LDWORK, BWORK, INFO ) IF ( INFO.EQ.0 ) THEN WRITE ( NOUT, FMT = 99997 ) DO 10 I = 1, N WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,N ) 10 CONTINUE WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NMEAS ) 20 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 30 I = 1, NCON WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,N ) 30 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 40 I = 1, NCON WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NMEAS ) 40 CONTINUE WRITE( NOUT, FMT = 99993 ) WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 8 ) ELSE WRITE( NOUT, FMT = 99998 ) INFO END IF END IF STOP * 99999 FORMAT (' SB10DD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (/' INFO on exit from SB10DD =',I2) 99997 FORMAT (/' The controller state matrix AK is'/) 99996 FORMAT (/' The controller input matrix BK is'/) 99995 FORMAT (/' The controller output matrix CK is'/) 99994 FORMAT (/' The controller matrix DK is'/) 99993 FORMAT (/' The estimated condition numbers are'/) 99992 FORMAT (10(1X,F8.4)) 99991 FORMAT ( 5(1X,D12.5)) 99990 FORMAT (/' N is out of range.',/' N = ',I5) 99989 FORMAT (/' M is out of range.',/' M = ',I5) 99988 FORMAT (/' NP is out of range.',/' NP = ',I5) 99987 FORMAT (/' NCON is out of range.',/' NCON = ',I5) 99986 FORMAT (/' NMEAS is out of range.',/' NMEAS = ',I5) ENDProgram Data
SB10DD EXAMPLE PROGRAM DATA 6 5 5 2 2 -0.7 0.0 0.3 0.0 -0.5 -0.1 -0.6 0.2 -0.4 -0.3 0.0 0.0 -0.5 0.7 -0.1 0.0 0.0 -0.8 -0.7 0.0 0.0 -0.5 -1.0 0.0 0.0 0.3 0.6 -0.9 0.1 -0.4 0.5 -0.8 0.0 0.0 0.2 -0.9 -1.0 -2.0 -2.0 1.0 0.0 1.0 0.0 1.0 -2.0 1.0 -3.0 -4.0 0.0 2.0 -2.0 1.0 -2.0 1.0 0.0 -1.0 0.0 1.0 -2.0 0.0 3.0 1.0 0.0 3.0 -1.0 -2.0 1.0 -1.0 2.0 -2.0 0.0 -3.0 -3.0 0.0 1.0 -1.0 1.0 0.0 0.0 2.0 0.0 -4.0 0.0 -2.0 1.0 -3.0 0.0 0.0 3.0 1.0 0.0 1.0 -2.0 1.0 0.0 -2.0 1.0 -1.0 -2.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 2.0 -1.0 -3.0 0.0 1.0 0.0 1.0 0.0 1.0 -1.0 0.0 0.0 1.0 2.0 1.0 111.294 0.00000001Program Results
SB10DD EXAMPLE PROGRAM RESULTS The controller state matrix AK is -18.0030 52.0376 26.0831 -0.4271 -40.9022 18.0857 18.8203 -57.6244 -29.0938 0.5870 45.3309 -19.8644 -26.5994 77.9693 39.0368 -1.4020 -60.1129 26.6910 -21.4163 62.1719 30.7507 -0.9201 -48.6221 21.8351 -0.8911 4.2787 2.3286 -0.2424 -3.0376 1.2169 -5.3286 16.1955 8.4824 -0.2489 -12.2348 5.1590 The controller input matrix BK is 16.9788 14.1648 -18.9215 -15.6726 25.2046 21.2848 20.1122 16.8322 1.4104 1.2040 5.3181 4.5149 The controller output matrix CK is -9.1941 27.5165 13.7364 -0.3639 -21.5983 9.6025 3.6490 -10.6194 -5.2772 0.2432 8.1108 -3.6293 The controller matrix DK is 9.0317 7.5348 -3.4006 -2.8219 The estimated condition numbers are 0.24960D+00 0.98548D+00 0.99186D+00 0.63733D-05 0.48625D+00 0.29430D-01 0.56942D-02 0.12470D-01