Purpose
To construct, for a given system G = (A,B,C,D), a feedback matrix F and an orthogonal transformation matrix Z, such that the systems Q = (Z'*(A+B*F)*Z, Z'*B, (C+D*F)*Z, D) and R = (Z'*(A+B*F)*Z, Z'*B, F*Z, I) provide a stable right coprime factorization of G in the form -1 G = Q * R , where G, Q and R are the corresponding transfer-function matrices. The resulting state dynamics matrix of the systems Q and R has eigenvalues lying inside a given stability domain. The Z matrix is not explicitly computed. Note: If the given state-space representation is not stabilizable, the unstabilizable part of the original system is automatically deflated and the order of the systems Q and R is accordingly reduced.Specification
SUBROUTINE SB08FD( DICO, N, M, P, ALPHA, A, LDA, B, LDB, C, LDC, $ D, LDD, NQ, NR, CR, LDCR, DR, LDDR, TOL, DWORK, $ LDWORK, IWARN, INFO ) C .. Scalar Arguments .. CHARACTER DICO INTEGER INFO, IWARN, LDA, LDB, LDC, LDCR, LDD, LDDR, $ LDWORK, M, N, NQ, NR, P DOUBLE PRECISION TOL C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), ALPHA(*), B(LDB,*), C(LDC,*), $ CR(LDCR,*), D(LDD,*), DR(LDDR,*), DWORK(*)Arguments
Mode Parameters
DICO CHARACTER*1 Specifies the type of the original system as follows: = 'C': continuous-time system; = 'D': discrete-time system.Input/Output Parameters
N (input) INTEGER The dimension of the state vector, i.e. the order of the matrix A, and also the number of rows of the matrix B and the number of columns of the matrices C and CR. N >= 0. M (input) INTEGER The dimension of input vector, i.e. the number of columns of the matrices B, D and DR and the number of rows of the matrices CR and DR. M >= 0. P (input) INTEGER The dimension of output vector, i.e. the number of rows of the matrices C and D. P >= 0. ALPHA (input) DOUBLE PRECISION array, dimension (2) ALPHA(1) contains the desired stability degree to be assigned for the eigenvalues of A+B*F, and ALPHA(2) the stability margin. The eigenvalues outside the ALPHA(2)-stability region will be assigned to have the real parts equal to ALPHA(1) < 0 and unmodified imaginary parts for a continuous-time system (DICO = 'C'), or moduli equal to 0 <= ALPHA(2) < 1 for a discrete-time system (DICO = 'D'). A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the state dynamics matrix A. On exit, the leading NQ-by-NQ part of this array contains the leading NQ-by-NQ part of the matrix Z'*(A+B*F)*Z, the state dynamics matrix of the numerator factor Q, in a real Schur form. The trailing NR-by-NR part of this matrix represents the state dynamics matrix of a minimal realization of the denominator factor R. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,M) On entry, the leading N-by-M part of this array must contain the input/state matrix. On exit, the leading NQ-by-M part of this array contains the leading NQ-by-M part of the matrix Z'*B, the input/state matrix of the numerator factor Q. The last NR rows of this matrix form the input/state matrix of a minimal realization of the denominator factor R. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,N). C (input/output) DOUBLE PRECISION array, dimension (LDC,N) On entry, the leading P-by-N part of this array must contain the state/output matrix C. On exit, the leading P-by-NQ part of this array contains the leading P-by-NQ part of the matrix (C+D*F)*Z, the state/output matrix of the numerator factor Q. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,P). D (input) DOUBLE PRECISION array, dimension (LDD,M) The leading P-by-M part of this array must contain the input/output matrix. D represents also the input/output matrix of the numerator factor Q. LDD INTEGER The leading dimension of array D. LDD >= MAX(1,P). NQ (output) INTEGER The order of the resulting factors Q and R. Generally, NQ = N - NS, where NS is the number of uncontrollable eigenvalues outside the stability region. NR (output) INTEGER The order of the minimal realization of the factor R. Generally, NR is the number of controllable eigenvalues of A outside the stability region (the number of modified eigenvalues). CR (output) DOUBLE PRECISION array, dimension (LDCR,N) The leading M-by-NQ part of this array contains the leading M-by-NQ part of the feedback matrix F*Z, which moves the eigenvalues of A lying outside the ALPHA-stable region to values which are on the ALPHA-stability boundary. The last NR columns of this matrix form the state/output matrix of a minimal realization of the denominator factor R. LDCR INTEGER The leading dimension of array CR. LDCR >= MAX(1,M). DR (output) DOUBLE PRECISION array, dimension (LDDR,M) The leading M-by-M part of this array contains an identity matrix representing the input/output matrix of the denominator factor R. LDDR INTEGER The leading dimension of array DR. LDDR >= MAX(1,M).Tolerances
TOL DOUBLE PRECISION The absolute tolerance level below which the elements of B are considered zero (used for controllability tests). If the user sets TOL <= 0, then an implicitly computed, default tolerance, defined by TOLDEF = N*EPS*NORM(B), is used instead, where EPS is the machine precision (see LAPACK Library routine DLAMCH) and NORM(B) denotes the 1-norm of B.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. LDWORK INTEGER The dimension of working array DWORK. LWORK >= MAX( 1, N*(N+5), 5*M, 4*P ). For optimum performance LDWORK should be larger.Warning Indicator
IWARN INTEGER = 0: no warning; = K: K violations of the numerical stability condition NORM(F) <= 10*NORM(A)/NORM(B) occured during the assignment of eigenvalues.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the reduction of A to a real Schur form failed; = 2: a failure was detected during the ordering of the real Schur form of A, or in the iterative process for reordering the eigenvalues of Z'*(A + B*F)*Z along the diagonal.Method
The subroutine is based on the factorization algorithm of [1].References
[1] Varga A. Coprime factors model reduction method based on square-root balancing-free techniques. System Analysis, Modelling and Simulation, vol. 11, pp. 303-311, 1993.Numerical Aspects
3 The algorithm requires no more than 14N floating point operations.Further Comments
NoneExample
Program Text
* SB08FD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 ) INTEGER LDA, LDB, LDC, LDCR, LDD, LDDR PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX, $ LDCR = MMAX, LDD = PMAX, LDDR = MMAX ) INTEGER LDWORK PARAMETER ( LDWORK = MAX( NMAX*( NMAX + 5 ), 5*MMAX, $ 4*PMAX ) ) * .. Local Scalars .. DOUBLE PRECISION TOL INTEGER I, INFO, IWARN, J, M, N, NQ, NR, P CHARACTER*1 DICO * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), ALPHA(2), B(LDB,MMAX), C(LDC,NMAX), $ CR(LDCR,NMAX), D(LDD,MMAX), DR(LDDR,MMAX), $ DWORK(LDWORK) * .. External Subroutines .. EXTERNAL SB08FD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, P, ALPHA(1), TOL, DICO ALPHA(2) = ALPHA(1) IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99990 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1, N ), I = 1, N ) IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99989 ) M ELSE READ ( NIN, FMT = * ) ( ( B(I,J), J = 1, M ), I = 1, N ) IF ( P.LT.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99988 ) P ELSE READ ( NIN, FMT = * ) ( ( C(I,J), J = 1, N ), I = 1, P ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1, M ), I = 1, P ) * Find a RCF for (A,B,C,D). CALL SB08FD( DICO, N, M, P, ALPHA, A, LDA, B, LDB, C, $ LDC, D, LDD, NQ, NR, CR, LDCR, DR, LDDR, $ TOL, DWORK, LDWORK, IWARN, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, NQ WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1, NQ ) 20 CONTINUE IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99993 ) DO 40 I = 1, NQ WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1, M ) 40 CONTINUE IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99992 ) DO 60 I = 1, P WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1, NQ ) 60 CONTINUE WRITE ( NOUT, FMT = 99991 ) DO 70 I = 1, P WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1, M ) 70 CONTINUE IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99986 ) DO 80 I = NQ-NR+1, NQ WRITE ( NOUT, FMT = 99995 ) $ ( A(I,J), J = NQ-NR+1, NQ ) 80 CONTINUE IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99985 ) DO 90 I = NQ-NR+1, NQ WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1, M ) 90 CONTINUE IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99984 ) DO 100 I = 1, M WRITE ( NOUT, FMT = 99995 ) $ ( CR(I,J), J = NQ-NR+1, NQ ) 100 CONTINUE WRITE ( NOUT, FMT = 99983 ) DO 110 I = 1, M WRITE ( NOUT, FMT = 99995 ) ( DR(I,J), J = 1, M ) 110 CONTINUE END IF END IF END IF END IF STOP * 99999 FORMAT (' SB08FD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from SB08FD = ',I2) 99996 FORMAT (/' The numerator state dynamics matrix AQ is ') 99995 FORMAT (20(1X,F8.4)) 99993 FORMAT (/' The numerator input/state matrix BQ is ') 99992 FORMAT (/' The numerator state/output matrix CQ is ') 99991 FORMAT (/' The numerator input/output matrix DQ is ') 99990 FORMAT (/' N is out of range.',/' N = ',I5) 99989 FORMAT (/' M is out of range.',/' M = ',I5) 99988 FORMAT (/' P is out of range.',/' P = ',I5) 99986 FORMAT (/' The denominator state dynamics matrix AR is ') 99985 FORMAT (/' The denominator input/state matrix BR is ') 99984 FORMAT (/' The denominator state/output matrix CR is ') 99983 FORMAT (/' The denominator input/output matrix DR is ') ENDProgram Data
SB08FD EXAMPLE PROGRAM DATA (Continuous system) 7 2 3 -1.0 1.E-10 C -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 0.0000 0.0000 12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12.500 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Program Results
SB08FD EXAMPLE PROGRAM RESULTS The numerator state dynamics matrix AQ is -1.4178 -5.1682 3.2450 -0.2173 0.0564 -3.2129 -3.6183 0.9109 -1.4178 -2.1262 0.1231 0.0805 -0.4392 -0.2528 0.0000 0.0000 -13.1627 0.0608 -0.0218 2.3461 5.8272 0.0000 0.0000 0.0000 -3.5957 -3.3373 1.3622 -3.6083 0.0000 0.0000 0.0000 0.0000 -12.4245 -9.8634 8.1191 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0000 -0.0135 0.0000 0.0000 0.0000 0.0000 0.0000 1.7393 -1.0000 The numerator input/state matrix BQ is 5.0302 -0.0063 0.7078 -0.0409 -11.3663 0.0051 0.1760 0.5879 -0.0265 12.2119 1.0104 1.3262 0.4474 -2.2388 The numerator state/output matrix CQ is -0.8659 0.2787 -0.3432 0.0020 0.0000 0.2026 0.1172 0.0797 -0.3951 0.0976 -0.0292 0.0062 0.7676 0.4879 -0.0165 -0.0645 0.0097 0.8032 -0.1602 0.3050 -0.4812 The numerator input/output matrix DQ is 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 The denominator state dynamics matrix AR is -1.0000 -0.0135 1.7393 -1.0000 The denominator input/state matrix BR is 1.0104 1.3262 0.4474 -2.2388 The denominator state/output matrix CR is -0.1091 -0.4653 -0.7055 0.4766 The denominator input/output matrix DR is 1.0000 0.0000 0.0000 1.0000