Purpose
To construct, for a given system G = (A,B,C,D), an output injection matrix H, an orthogonal transformation matrix Z, and a gain matrix V, such that the systems Q = (Z'*(A+H*C)*Z, Z'*(B+H*D), V*C*Z, V*D) and R = (Z'*(A+H*C)*Z, Z'*H, V*C*Z, V) provide a stable left coprime factorization of G in the form -1 G = R * Q, where G, Q and R are the corresponding transfer-function matrices and the denominator R is co-inner, that is, R(s)*R'(-s) = I in the continuous-time case, or R(z)*R'(1/z) = I in the discrete-time case. The Z matrix is not explicitly computed. Note: G must have no observable poles on the imaginary axis for a continuous-time system, or on the unit circle for a discrete-time system. If the given state-space representation is not detectable, the undetectable part of the original system is automatically deflated and the order of the systems Q and R is accordingly reduced.Specification
SUBROUTINE SB08CD( DICO, N, M, P, A, LDA, B, LDB, C, LDC, D, LDD, $ NQ, NR, BR, LDBR, DR, LDDR, TOL, DWORK, LDWORK, $ IWARN, INFO ) C .. Scalar Arguments .. CHARACTER DICO INTEGER INFO, IWARN, LDA, LDB, LDBR, LDC, LDD, LDDR, $ LDWORK, M, N, NQ, NR, P DOUBLE PRECISION TOL C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), B(LDB,*), BR(LDBR,*), C(LDC,*), $ D(LDD,*), DR(LDDR,*), DWORK(*)Arguments
Mode Parameters
DICO CHARACTER*1 Specifies the type of the original system as follows: = 'C': continuous-time system; = 'D': discrete-time system.Input/Output Parameters
N (input) INTEGER The dimension of the state vector, i.e. the order of the matrix A, and also the number of rows of the matrices B and BR, and the number of columns of the matrix C. N >= 0. M (input) INTEGER The dimension of input vector, i.e. the number of columns of the matrices B and D. M >= 0. P (input) INTEGER The dimension of output vector, i.e. the number of rows of the matrices C, D and DR, and the number of columns of the matrices BR and DR. P >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the state dynamics matrix A. The matrix A must not have observable eigenvalues on the imaginary axis, if DICO = 'C', or on the unit circle, if DICO = 'D'. On exit, the leading NQ-by-NQ part of this array contains the leading NQ-by-NQ part of the matrix Z'*(A+H*C)*Z, the state dynamics matrix of the numerator factor Q, in a real Schur form. The leading NR-by-NR part of this matrix represents the state dynamics matrix of a minimal realization of the denominator factor R. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,MAX(M,P)) On entry, the leading N-by-M part of this array must contain the input/state matrix. On exit, the leading NQ-by-M part of this array contains the leading NQ-by-M part of the matrix Z'*(B+H*D), the input/state matrix of the numerator factor Q. The remaining part of this array is needed as workspace. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,N). C (input/output) DOUBLE PRECISION array, dimension (LDC,N) On entry, the leading P-by-N part of this array must contain the state/output matrix C. On exit, the leading P-by-NQ part of this array contains the leading P-by-NQ part of the matrix V*C*Z, the state/output matrix of the numerator factor Q. The first NR columns of this array represent the state/output matrix of a minimal realization of the denominator factor R. The remaining part of this array is needed as workspace. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,M,P), if N > 0. LDC >= 1, if N = 0. D (input/output) DOUBLE PRECISION array, dimension (LDD,MAX(M,P)) On entry, the leading P-by-M part of this array must contain the input/output matrix. On exit, the leading P-by-M part of this array contains the matrix V*D representing the input/output matrix of the numerator factor Q. The remaining part of this array is needed as workspace. LDD INTEGER The leading dimension of array D. LDD >= MAX(1,M,P). NQ (output) INTEGER The order of the resulting factors Q and R. Generally, NQ = N - NS, where NS is the number of unobservable eigenvalues outside the stability region. NR (output) INTEGER The order of the minimal realization of the factor R. Generally, NR is the number of observable eigenvalues of A outside the stability region (the number of modified eigenvalues). BR (output) DOUBLE PRECISION array, dimension (LDBR,P) The leading NQ-by-P part of this array contains the leading NQ-by-P part of the output injection matrix Z'*H, which reflects the eigenvalues of A lying outside the stable region to values which are symmetric with respect to the imaginary axis (if DICO = 'C') or the unit circle (if DICO = 'D'). The first NR rows of this matrix form the input/state matrix of a minimal realization of the denominator factor R. LDBR INTEGER The leading dimension of array BR. LDBR >= MAX(1,N). DR (output) DOUBLE PRECISION array, dimension (LDDR,P) The leading P-by-P part of this array contains the lower triangular matrix V representing the input/output matrix of the denominator factor R. LDDR INTEGER The leading dimension of array DR. LDDR >= MAX(1,P).Tolerances
TOL DOUBLE PRECISION The absolute tolerance level below which the elements of C are considered zero (used for observability tests). If the user sets TOL <= 0, then an implicitly computed, default tolerance, defined by TOLDEF = N*EPS*NORM(C), is used instead, where EPS is the machine precision (see LAPACK Library routine DLAMCH) and NORM(C) denotes the infinity-norm of C.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. LDWORK INTEGER The dimension of working array DWORK. LDWORK >= MAX( 1, P*N + MAX( N*(N+5),P*(P+2),4*P,4*M ) ). For optimum performance LDWORK should be larger.Warning Indicator
IWARN INTEGER = 0: no warning; = K: K violations of the numerical stability condition NORM(H) <= 10*NORM(A)/NORM(C) occured during the assignment of eigenvalues.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the reduction of A to a real Schur form failed; = 2: a failure was detected during the ordering of the real Schur form of A, or in the iterative process for reordering the eigenvalues of Z'*(A + H*C)*Z along the diagonal; = 3: if DICO = 'C' and the matrix A has an observable eigenvalue on the imaginary axis, or DICO = 'D' and A has an observable eigenvalue on the unit circle.Method
The subroutine uses the right coprime factorization algorithm with inner denominator of [1] applied to G'.References
[1] Varga A. A Schur method for computing coprime factorizations with inner denominators and applications in model reduction. Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.Numerical Aspects
3 The algorithm requires no more than 14N floating point operations.Further Comments
NoneExample
Program Text
* SB08CD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 ) INTEGER MPMAX PARAMETER ( MPMAX = MAX( MMAX, PMAX ) ) INTEGER LDA, LDB, LDBR, LDC, LDD, LDDR PARAMETER ( LDA = NMAX, LDB = NMAX, LDBR = NMAX, $ LDC = MPMAX, LDD = MPMAX, LDDR = PMAX ) INTEGER LDWORK PARAMETER ( LDWORK = NMAX*PMAX + MAX( NMAX*( NMAX + 5 ), $ PMAX*( PMAX + 2 ), 4*PMAX, 4*MMAX ) ) * .. Local Scalars .. DOUBLE PRECISION TOL INTEGER I, INFO, IWARN, J, M, N, NQ, NR, P CHARACTER*1 DICO * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), B(LDB,MPMAX), BR(LDBR,PMAX), $ C(LDC,NMAX), D(LDD,MPMAX), DR(LDDR,PMAX), $ DWORK(LDWORK) * .. External Subroutines .. EXTERNAL SB08CD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, P, TOL, DICO IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99990 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1, N ), I = 1, N ) IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99989 ) M ELSE READ ( NIN, FMT = * ) ( ( B(I,J), J = 1, M ), I = 1, N ) IF ( P.LT.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99988 ) P ELSE READ ( NIN, FMT = * ) ( ( C(I,J), J = 1, N ), I = 1, P ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1, M ), I = 1, P ) * Find a RCFID for (A,B,C,D). CALL SB08CD( DICO, N, M, P, A, LDA, B, LDB, C, LDC, $ D, LDD, NQ, NR, BR, LDBR, DR, LDDR, TOL, $ DWORK, LDWORK, IWARN, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, NQ WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1, NQ ) 20 CONTINUE IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99993 ) DO 40 I = 1, NQ WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1, M ) 40 CONTINUE IF( NQ.GT.0 ) WRITE ( NOUT, FMT = 99992 ) DO 60 I = 1, P WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1, NQ ) 60 CONTINUE WRITE ( NOUT, FMT = 99991 ) DO 70 I = 1, P WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1, M ) 70 CONTINUE IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99986 ) DO 80 I = 1, NR WRITE ( NOUT, FMT = 99995 ) $ ( A(I,J), J = 1, NR ) 80 CONTINUE IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99985 ) DO 90 I = 1, NR WRITE ( NOUT, FMT = 99995 ) ( BR(I,J), J = 1, P ) 90 CONTINUE IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99984 ) DO 100 I = 1, P WRITE ( NOUT, FMT = 99995 ) $ ( C(I,J), J = 1, NR ) 100 CONTINUE WRITE ( NOUT, FMT = 99983 ) DO 110 I = 1, P WRITE ( NOUT, FMT = 99995 ) ( DR(I,J), J = 1, P ) 110 CONTINUE END IF END IF END IF END IF STOP * 99999 FORMAT (' SB08CD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from SB08CD = ',I2) 99996 FORMAT (/' The numerator state dynamics matrix AQ is ') 99995 FORMAT (20(1X,F8.4)) 99993 FORMAT (/' The numerator input/state matrix BQ is ') 99992 FORMAT (/' The numerator state/output matrix CQ is ') 99991 FORMAT (/' The numerator input/output matrix DQ is ') 99990 FORMAT (/' N is out of range.',/' N = ',I5) 99989 FORMAT (/' M is out of range.',/' M = ',I5) 99988 FORMAT (/' P is out of range.',/' P = ',I5) 99986 FORMAT (/' The denominator state dynamics matrix AR is ') 99985 FORMAT (/' The denominator input/state matrix BR is ') 99984 FORMAT (/' The denominator state/output matrix CR is ') 99983 FORMAT (/' The denominator input/output matrix DR is ') ENDProgram Data
SB08CD EXAMPLE PROGRAM DATA (Continuous system) 7 2 3 1.E-10 C -0.04165 0.0000 4.9200 0.4920 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 0.5450 0.0000 0.0000 0.0000 0.0545 0.0000 0.0000 0.0000 0.0000 0.0000 -0.49200 0.004165 0.0000 4.9200 0.0000 0.0000 0.0000 0.0000 0.5210 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 0.0000 0.0000 12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12.500 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Program Results
SB08CD EXAMPLE PROGRAM RESULTS The numerator state dynamics matrix AQ is -0.1605 0.0523 0.9423 2.0193 0.4166 0.2518 1.6140 -0.4489 -0.1605 1.7955 3.8719 -0.2394 0.0491 -0.8740 0.0000 0.0000 -12.4245 3.5463 -0.0057 0.0254 -0.0053 0.0000 0.0000 0.0000 -3.5957 -0.0153 -0.0290 -0.0616 0.0000 0.0000 0.0000 0.0000 -13.1627 -1.9835 -3.6182 0.0000 0.0000 0.0000 0.0000 0.0000 -1.4178 5.6218 0.0000 0.0000 0.0000 0.0000 0.0000 -0.8374 -1.4178 The numerator input/state matrix BQ is -1.0157 0.2554 0.5523 0.4443 0.0056 -11.6989 0.0490 4.3728 11.7198 -0.0038 -2.8173 0.0308 3.1018 -0.0009 The numerator state/output matrix CQ is 0.1975 -0.1063 -0.0006 -0.0083 0.1279 0.8797 0.3994 0.8541 -0.4513 -0.0007 -0.0041 0.0305 -0.2562 0.0122 0.4668 0.8826 0.0248 -0.0506 0.0000 0.0022 -0.0017 The numerator input/output matrix DQ is 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 The denominator state dynamics matrix AR is -0.1605 0.0523 -0.4489 -0.1605 The denominator input/state matrix BR is -0.0158 -0.0692 -0.1688 0.0306 0.1281 -0.4984 The denominator state/output matrix CR is 0.1975 -0.1063 0.8541 -0.4513 0.4668 0.8826 The denominator input/output matrix DR is 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000