Purpose
To solve a system of equations in quasi-Hessenberg form (Hessenberg form plus two consecutive offdiagonals) with two right-hand sides.Specification
SUBROUTINE SB04RX( RC, UL, M, A, LDA, LAMBD1, LAMBD2, LAMBD3, $ LAMBD4, D, TOL, IWORK, DWORK, LDDWOR, INFO ) C .. Scalar Arguments .. CHARACTER RC, UL INTEGER INFO, LDA, LDDWOR, M DOUBLE PRECISION LAMBD1, LAMBD2, LAMBD3, LAMBD4, TOL C .. Array Arguments .. INTEGER IWORK(*) DOUBLE PRECISION A(LDA,*), D(*), DWORK(LDDWOR,*)Arguments
Mode Parameters
RC CHARACTER*1 Indicates processing by columns or rows, as follows: = 'R': Row transformations are applied; = 'C': Column transformations are applied. UL CHARACTER*1 Indicates whether A is upper or lower Hessenberg matrix, as follows: = 'U': A is upper Hessenberg; = 'L': A is lower Hessenberg.Input/Output Parameters
M (input) INTEGER The order of the matrix A. M >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,M) The leading M-by-M part of this array must contain a matrix A in Hessenberg form. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,M). LAMBD1, (input) DOUBLE PRECISION LAMBD2, These variables must contain the 2-by-2 block to be LAMBD3, multiplied to the elements of A. LAMBD4 D (input/output) DOUBLE PRECISION array, dimension (2*M) On entry, this array must contain the two right-hand side vectors of the quasi-Hessenberg system, stored row-wise. On exit, if INFO = 0, this array contains the two solution vectors of the quasi-Hessenberg system, stored row-wise.Tolerances
TOL DOUBLE PRECISION The tolerance to be used to test for near singularity of the triangular factor R of the quasi-Hessenberg matrix. A matrix whose estimated condition number is less than 1/TOL is considered to be nonsingular.Workspace
IWORK INTEGER array, dimension (2*M) DWORK DOUBLE PRECISION array, dimension (LDDWOR,2*M+3) The leading 2*M-by-2*M part of this array is used for computing the triangular factor of the QR decomposition of the quasi-Hessenberg matrix. The remaining 6*M elements are used as workspace for the computation of the reciprocal condition estimate. LDDWOR INTEGER The leading dimension of array DWORK. LDDWOR >= MAX(1,2*M).Error Indicator
INFO INTEGER = 0: successful exit; = 1: if the quasi-Hessenberg matrix is (numerically) singular. That is, its estimated reciprocal condition number is less than or equal to TOL.Numerical Aspects
None.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None