Purpose
To compute the matrix J'*J + c*I, for the Jacobian J as received from SLICOT Library routine NF01BD: / dy(1)/dwb(1) | dy(1)/dtheta \ Jc = | : | : | . \ dy(L)/dwb(L) | dy(L)/dtheta / This is a compressed representation of the actual structure / J_1 0 .. 0 | L_1 \ | 0 J_2 .. 0 | L_2 | J = | : : .. : | : | . | : : .. : | : | \ 0 0 .. J_L | L_L /Specification
SUBROUTINE NF01BU( STOR, UPLO, N, IPAR, LIPAR, DPAR, LDPAR, J, $ LDJ, JTJ, LDJTJ, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER STOR, UPLO INTEGER INFO, LDJ, LDJTJ, LDPAR, LDWORK, LIPAR, N C .. Array Arguments .. DOUBLE PRECISION DPAR(*), DWORK(*), J(LDJ,*), JTJ(*) INTEGER IPAR(*)Arguments
Mode Parameters
STOR CHARACTER*1 Specifies the storage scheme for the symmetric matrix J'*J + c*I, as follows: = 'F' : full storage is used; = 'P' : packed storage is used. UPLO CHARACTER*1 Specifies which part of the matrix J'*J + c*I is stored, as follows: = 'U' : the upper triagular part is stored; = 'L' : the lower triagular part is stored.Input/Output Parameters
N (input) INTEGER The order of the matrix J'*J + c*I. N = BN*BSN + ST >= 0. (See parameter description below.) IPAR (input) INTEGER array, dimension (LIPAR) The integer parameters describing the structure of the matrix J, as follows: IPAR(1) must contain ST, the number of parameters corresponding to the linear part. ST >= 0. IPAR(2) must contain BN, the number of blocks, BN = L, for the parameters corresponding to the nonlinear part. BN >= 0. IPAR(3) must contain BSM, the number of rows of the blocks J_k = dy(k)/dwb(k), k = 1:BN, if BN > 0, or the number of rows of the matrix J, if BN <= 1. IPAR(4) must contain BSN, the number of columns of the blocks J_k, k = 1:BN. BSN >= 0. LIPAR (input) INTEGER The length of the array IPAR. LIPAR >= 4. DPAR (input) DOUBLE PRECISION array, dimension (LDPAR) The real parameters needed for solving the problem. The entry DPAR(1) must contain the real scalar c. LDPAR (input) INTEGER The length of the array DPAR. LDPAR >= 1. J (input) DOUBLE PRECISION array, dimension (LDJ, NC) where NC = N if BN <= 1, and NC = BSN+ST, if BN > 1. The leading NR-by-NC part of this array must contain the (compressed) representation (Jc) of the Jacobian matrix J, where NR = BSM if BN <= 1, and NR = BN*BSM, if BN > 1. LDJ (input) INTEGER The leading dimension of array J. LDJ >= MAX(1,NR). JTJ (output) DOUBLE PRECISION array, dimension (LDJTJ,N), if STOR = 'F', dimension (N*(N+1)/2), if STOR = 'P'. The leading N-by-N (if STOR = 'F'), or N*(N+1)/2 (if STOR = 'P') part of this array contains the upper or lower triangle of the matrix J'*J + c*I, depending on UPLO = 'U', or UPLO = 'L', respectively, stored either as a two-dimensional, or one-dimensional array, depending on STOR. LDJTJ INTEGER The leading dimension of the array JTJ. LDJTJ >= MAX(1,N), if STOR = 'F'. LDJTJ >= 1, if STOR = 'P'.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) Currently, this array is not used. LDWORK INTEGER The length of the array DWORK. LDWORK >= 0.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
The matrix product is computed columnn-wise, exploiting the symmetry. BLAS 3 routines DGEMM and DSYRK are used if STOR = 'F', and BLAS 2 routine DGEMV is used if STOR = 'P'.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None