Purpose
To calculate the output of a set of neural networks with the structure - tanh(w1'*z+b1) - / : \ z --- : --- sum(ws(i)*...)+ b(n+1) --- y, \ : / - tanh(wn'*z+bn) - given the input z and the parameter vectors wi, ws, and b, where z, w1, ..., wn are vectors of length NZ, ws is a vector of length n, b(1), ..., b(n+1) are scalars, and n is called the number of neurons in the hidden layer, or just number of neurons. Such a network is used for each L output variables.Specification
SUBROUTINE NF01AY( NSMP, NZ, L, IPAR, LIPAR, WB, LWB, Z, LDZ, $ Y, LDY, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, L, LDWORK, LDY, LDZ, LIPAR, LWB, NSMP, NZ C .. Array Arguments .. DOUBLE PRECISION DWORK(*), WB(*), Y(LDY,*), Z(LDZ,*) INTEGER IPAR(*)Arguments
Input/Output Parameters
NSMP (input) INTEGER The number of training samples. NSMP >= 0. NZ (input) INTEGER The length of each input sample. NZ >= 0. L (input) INTEGER The length of each output sample. L >= 0. IPAR (input) INTEGER array, dimension (LIPAR) The integer parameters needed. IPAR(1) must contain the number of neurons, n, per output variable, denoted NN in the sequel. NN >= 0. LIPAR (input) INTEGER The length of the vector IPAR. LIPAR >= 1. WB (input) DOUBLE PRECISION array, dimension (LWB) The leading (NN*(NZ+2)+1)*L part of this array must contain the weights and biases of the network. This vector is partitioned into L vectors of length NN*(NZ+2)+1, WB = [ wb(1), ..., wb(L) ]. Each wb(k), k = 1, ..., L, corresponds to one output variable, and has the structure wb(k) = [ w1(1), ..., w1(NZ), ..., wn(1), ..., wn(NZ), ws(1), ..., ws(n), b(1), ..., b(n+1) ], where wi(j) are the weights of the hidden layer, ws(i) are the weights of the linear output layer, and b(i) are the biases, as in the scheme above. LWB (input) INTEGER The length of the array WB. LWB >= ( NN*(NZ + 2) + 1 )*L. Z (input) DOUBLE PRECISION array, dimension (LDZ, NZ) The leading NSMP-by-NZ part of this array must contain the set of input samples, Z = ( Z(1,1),...,Z(1,NZ); ...; Z(NSMP,1),...,Z(NSMP,NZ) ). LDZ INTEGER The leading dimension of the array Z. LDZ >= MAX(1,NSMP). Y (output) DOUBLE PRECISION array, dimension (LDY, L) The leading NSMP-by-L part of this array contains the set of output samples, Y = ( Y(1,1),...,Y(1,L); ...; Y(NSMP,1),...,Y(NSMP,L) ). LDY INTEGER The leading dimension of the array Y. LDY >= MAX(1,NSMP).Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) LDWORK INTEGER The length of the array DWORK. LDWORK >= 2*NN. For better performance, LDWORK should be larger.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
BLAS routines are used to compute the matrix-vector products.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None