Purpose
Given an MP-by-NP polynomial matrix of degree dp dp-1 dp P(s) = P(0) + ... + P(dp-1) * s + P(dp) * s (1) the routine composes the related pencil s*E-A where | I | | O -P(dp) | | . | | I . . | A = | . | and E = | . . . |. (2) | . | | . O . | | I | | I O -P(2) | | P(0) | | I -P(1) | ================================================================== REMARK: This routine is intended to be called only from the SLICOT routine MC03ND. ==================================================================Specification
SUBROUTINE MC03NX( MP, NP, DP, P, LDP1, LDP2, A, LDA, E, LDE ) C .. Scalar Arguments .. INTEGER DP, LDA, LDE, LDP1, LDP2, MP, NP C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), E(LDE,*), P(LDP1,LDP2,*)Arguments
Input/Output Parameters
MP (input) INTEGER The number of rows of the polynomial matrix P(s). MP >= 0. NP (input) INTEGER The number of columns of the polynomial matrix P(s). NP >= 0. DP (input) INTEGER The degree of the polynomial matrix P(s). DP >= 1. P (input) DOUBLE PRECISION array, dimension (LDP1,LDP2,DP+1) The leading MP-by-NP-by-(DP+1) part of this array must contain the coefficients of the polynomial matrix P(s) in (1) in increasing powers of s. LDP1 INTEGER The leading dimension of array P. LDP1 >= MAX(1,MP). LDP2 INTEGER The second dimension of array P. LDP2 >= MAX(1,NP). A (output) DOUBLE PRECISION array, dimension (LDA,(DP-1)*MP+NP) The leading DP*MP-by-((DP-1)*MP+NP) part of this array contains the matrix A as described in (2). LDA INTEGER The leading dimension of array A. LDA >= MAX(1,DP*MP). E (output) DOUBLE PRECISION array, dimension (LDE,(DP-1)*MP+NP) The leading DP*MP-by-((DP-1)*MP+NP) part of this array contains the matrix E as described in (2). LDE INTEGER The leading dimension of array E. LDE >= MAX(1,DP*MP).Numerical Aspects
None.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None