Purpose
To compute the coefficients of the real polynomial matrix P(x) = P1(x) * P2(x) + alpha * P3(x), where P1(x), P2(x) and P3(x) are given real polynomial matrices and alpha is a real scalar. Each of the polynomial matrices P1(x), P2(x) and P3(x) may be the zero matrix.Specification
SUBROUTINE MC03MD( RP1, CP1, CP2, DP1, DP2, DP3, ALPHA, P1, $ LDP11, LDP12, P2, LDP21, LDP22, P3, LDP31, $ LDP32, DWORK, INFO ) C .. Scalar Arguments .. INTEGER CP1, CP2, DP1, DP2, DP3, INFO, LDP11, LDP12, $ LDP21, LDP22, LDP31, LDP32, RP1 DOUBLE PRECISION ALPHA C .. Array Arguments .. DOUBLE PRECISION DWORK(*), P1(LDP11,LDP12,*), P2(LDP21,LDP22,*), $ P3(LDP31,LDP32,*)Arguments
Input/Output Parameters
RP1 (input) INTEGER The number of rows of the matrices P1(x) and P3(x). RP1 >= 0. CP1 (input) INTEGER The number of columns of matrix P1(x) and the number of rows of matrix P2(x). CP1 >= 0. CP2 (input) INTEGER The number of columns of the matrices P2(x) and P3(x). CP2 >= 0. DP1 (input) INTEGER The degree of the polynomial matrix P1(x). DP1 >= -1. DP2 (input) INTEGER The degree of the polynomial matrix P2(x). DP2 >= -1. DP3 (input/output) INTEGER On entry, the degree of the polynomial matrix P3(x). DP3 >= -1. On exit, the degree of the polynomial matrix P(x). ALPHA (input) DOUBLE PRECISION The scalar value alpha of the problem. P1 (input) DOUBLE PRECISION array, dimension (LDP11,LDP12,*) If DP1 >= 0, then the leading RP1-by-CP1-by-(DP1+1) part of this array must contain the coefficients of the polynomial matrix P1(x). Specifically, P1(i,j,k) must contain the coefficient of x**(k-1) of the polynomial which is the (i,j)-th element of P1(x), where i = 1,2,..., RP1, j = 1,2,...,CP1 and k = 1,2,...,DP1+1. If DP1 = -1, then P1(x) is taken to be the zero polynomial matrix, P1 is not referenced and can be supplied as a dummy array (i.e. set the parameters LDP11 = LDP12 = 1 and declare this array to be P1(1,1,1) in the calling program). LDP11 INTEGER The leading dimension of array P1. LDP11 >= MAX(1,RP1) if DP1 >= 0, LDP11 >= 1 if DP1 = -1. LDP12 INTEGER The second dimension of array P1. LDP12 >= MAX(1,CP1) if DP1 >= 0, LDP12 >= 1 if DP1 = -1. P2 (input) DOUBLE PRECISION array, dimension (LDP21,LDP22,*) If DP2 >= 0, then the leading CP1-by-CP2-by-(DP2+1) part of this array must contain the coefficients of the polynomial matrix P2(x). Specifically, P2(i,j,k) must contain the coefficient of x**(k-1) of the polynomial which is the (i,j)-th element of P2(x), where i = 1,2,..., CP1, j = 1,2,...,CP2 and k = 1,2,...,DP2+1. If DP2 = -1, then P2(x) is taken to be the zero polynomial matrix, P2 is not referenced and can be supplied as a dummy array (i.e. set the parameters LDP21 = LDP22 = 1 and declare this array to be P2(1,1,1) in the calling program). LDP21 INTEGER The leading dimension of array P2. LDP21 >= MAX(1,CP1) if DP2 >= 0, LDP21 >= 1 if DP2 = -1. LDP22 INTEGER The second dimension of array P2. LDP22 >= MAX(1,CP2) if DP2 >= 0, LDP22 >= 1 if DP2 = -1. P3 (input/output) DOUBLE PRECISION array, dimension (LDP31,LDP32,n), where n = MAX(DP1+DP2,DP3,0)+1. On entry, if DP3 >= 0, then the leading RP1-by-CP2-by-(DP3+1) part of this array must contain the coefficients of the polynomial matrix P3(x). Specifically, P3(i,j,k) must contain the coefficient of x**(k-1) of the polynomial which is the (i,j)-th element of P3(x), where i = 1,2,...,RP1, j = 1,2,...,CP2 and k = 1,2,...,DP3+1. If DP3 = -1, then P3(x) is taken to be the zero polynomial matrix. On exit, if DP3 >= 0 on exit (ALPHA <> 0.0 and DP3 <> -1, on entry, or DP1 <> -1 and DP2 <> -1), then the leading RP1-by-CP2-by-(DP3+1) part of this array contains the coefficients of P(x). Specifically, P3(i,j,k) contains the coefficient of x**(k-1) of the polynomial which is the (i,j)-th element of P(x), where i = 1,2,...,RP1, j = 1,2, ...,CP2 and k = 1,2,...,DP3+1. If DP3 = -1 on exit, then the coefficients of P(x) (the zero polynomial matrix) are not stored in the array. LDP31 INTEGER The leading dimension of array P3. LDP31 >= MAX(1,RP1). LDP32 INTEGER The second dimension of array P3. LDP32 >= MAX(1,CP2).Workspace
DWORK DOUBLE PRECISION array, dimension (CP1)Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
Given real polynomial matrices DP1 i P1(x) = SUM (A(i+1) * x ), i=0 DP2 i P2(x) = SUM (B(i+1) * x ), i=0 DP3 i P3(x) = SUM (C(i+1) * x ) i=0 and a real scalar alpha, the routine computes the coefficients d ,d ,..., of the polynomial matrix 1 2 P(x) = P1(x) * P2(x) + alpha * P3(x) from the formula s d = SUM (A(k+1) * B(i-k+1)) + alpha * C(i+1), i+1 k=r where i = 0,1,...,DP1+DP2 and r and s depend on the value of i (e.g. if i <= DP1 and i <= DP2, then r = 0 and s = i).Numerical Aspects
None.Further Comments
Other elementary operations involving polynomial matrices can easily be obtained by calling the appropriate BLAS routine(s).Example
Program Text
* MC03MD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER CP1MAX, CP2MAX, DP1MAX, DP2MAX, DP3MAX, RP1MAX PARAMETER ( CP1MAX = 10, CP2MAX = 10, DP1MAX = 10, $ DP2MAX = 10, DP3MAX = 20, RP1MAX = 10 ) INTEGER LDP11, LDP12, LDP21, LDP22, LDP31, LDP32 PARAMETER ( LDP11 = RP1MAX, LDP12 = CP1MAX, $ LDP21 = CP1MAX, LDP22 = CP2MAX, $ LDP31 = RP1MAX, LDP32 = CP2MAX ) * .. Local Scalars .. DOUBLE PRECISION ALPHA INTEGER CP1, CP2, DP1, DP2, DP3, I, INFO, J, K, RP1 * .. Local Arrays .. DOUBLE PRECISION DWORK(CP1MAX), $ P1(LDP11,LDP12,DP1MAX+1), $ P2(LDP21,LDP22,DP2MAX+1), $ P3(LDP31,LDP32,DP3MAX+1) * .. External Subroutines .. EXTERNAL MC03MD * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) RP1, CP1, CP2 IF ( RP1.LT.0 .OR. RP1.GT.RP1MAX ) THEN WRITE ( NOUT, FMT = 99995 ) RP1 ELSE IF ( CP1.LT.0 .OR. CP1.GT.CP1MAX ) THEN WRITE ( NOUT, FMT = 99994 ) CP1 ELSE IF ( CP2.LT.0 .OR. CP2.GT.CP2MAX ) THEN WRITE ( NOUT, FMT = 99993 ) CP2 ELSE READ ( NIN, FMT = * ) DP1 IF ( DP1.LE.-2 .OR. DP1.GT.DP1MAX ) THEN WRITE ( NOUT, FMT = 99992 ) DP1 ELSE DO 40 K = 1, DP1 + 1 DO 20 J = 1, CP1 READ ( NIN, FMT = * ) ( P1(I,J,K), I = 1,RP1 ) 20 CONTINUE 40 CONTINUE READ ( NIN, FMT = * ) DP2 IF ( DP2.LE.-2 .OR. DP2.GT.DP2MAX ) THEN WRITE ( NOUT, FMT = 99991 ) DP2 ELSE DO 80 K = 1, DP2 + 1 DO 60 J = 1, CP2 READ ( NIN, FMT = * ) ( P2(I,J,K), I = 1,CP1 ) 60 CONTINUE 80 CONTINUE READ ( NIN, FMT = * ) DP3 IF ( DP3.LE.-2 .OR. DP3.GT.DP3MAX ) THEN WRITE ( NOUT, FMT = 99990 ) DP3 ELSE DO 120 K = 1, DP3 + 1 DO 100 J = 1, CP2 READ ( NIN, FMT = * ) ( P3(I,J,K), I = 1,RP1 ) 100 CONTINUE 120 CONTINUE READ ( NIN, FMT = * ) ALPHA * Compute the coefficients of the polynomial matrix P(x) CALL MC03MD( RP1, CP1, CP2, DP1, DP2, DP3, ALPHA, P1, $ LDP11, LDP12, P2, LDP21, LDP22, P3, $ LDP31, LDP32, DWORK, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DP3, $ ( I-1, I = 1,DP3+1 ) DO 160 I = 1, RP1 DO 140 J = 1, CP2 WRITE ( NOUT, FMT = 99996 ) I, J, $ ( P3(I,J,K), K = 1,DP3+1 ) 140 CONTINUE 160 CONTINUE END IF END IF END IF END IF END IF * STOP * 99999 FORMAT (' MC03MD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MC03MD = ',I2) 99997 FORMAT (' The polynomial matrix P(x) (of degree ',I2,') is ', $ //' power of x ',20I8) 99996 FORMAT (/' element (',I2,',',I2,') is ',20(1X,F7.2)) 99995 FORMAT (/' RP1 is out of range.',/' RP1 = ',I5) 99994 FORMAT (/' CP1 is out of range.',/' CP1 = ',I5) 99993 FORMAT (/' CP2 is out of range.',/' CP2 = ',I5) 99992 FORMAT (/' DP1 is out of range.',/' DP1 = ',I5) 99991 FORMAT (/' DP2 is out of range.',/' DP2 = ',I5) 99990 FORMAT (/' DP3 is out of range.',/' DP3 = ',I5) ENDProgram Data
MC03MD EXAMPLE PROGRAM DATA 3 2 2 2 1.0 0.0 3.0 2.0 -1.0 2.0 -2.0 4.0 9.0 3.0 7.0 -2.0 6.0 2.0 -3.0 1.0 2.0 4.0 1 6.0 1.0 1.0 7.0 -9.0 -6.0 7.0 8.0 1 1.0 1.0 0.0 0.0 1.0 1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0Program Results
MC03MD EXAMPLE PROGRAM RESULTS The polynomial matrix P(x) (of degree 3) is power of x 0 1 2 3 element ( 1, 1) is 9.00 -31.00 37.00 -60.00 element ( 1, 2) is 15.00 41.00 23.00 50.00 element ( 2, 1) is 0.00 38.00 -64.00 -30.00 element ( 2, 2) is -6.00 44.00 100.00 30.00 element ( 3, 1) is 20.00 14.00 -83.00 3.00 element ( 3, 2) is 18.00 33.00 72.00 11.00