Purpose
To compute the coefficients of the polynomial P(x) = P1(x) * P2(x) + alpha * P3(x), where P1(x), P2(x) and P3(x) are given real polynomials and alpha is a real scalar. Each of the polynomials P1(x), P2(x) and P3(x) may be the zero polynomial.Specification
SUBROUTINE MC01RD( DP1, DP2, DP3, ALPHA, P1, P2, P3, INFO ) C .. Scalar Arguments .. INTEGER DP1, DP2, DP3, INFO DOUBLE PRECISION ALPHA C .. Array Arguments .. DOUBLE PRECISION P1(*), P2(*), P3(*)Arguments
Input/Output Parameters
DP1 (input) INTEGER The degree of the polynomial P1(x). DP1 >= -1. DP2 (input) INTEGER The degree of the polynomial P2(x). DP2 >= -1. DP3 (input/output) INTEGER On entry, the degree of the polynomial P3(x). DP3 >= -1. On exit, the degree of the polynomial P(x). ALPHA (input) DOUBLE PRECISION The scalar value alpha of the problem. P1 (input) DOUBLE PRECISION array, dimension (lenp1) where lenp1 = DP1 + 1 if DP1 >= 0 and 1 otherwise. If DP1 >= 0, then this array must contain the coefficients of P1(x) in increasing powers of x. If DP1 = -1, then P1(x) is taken to be the zero polynomial, P1 is not referenced and can be supplied as a dummy array. P2 (input) DOUBLE PRECISION array, dimension (lenp2) where lenp2 = DP2 + 1 if DP2 >= 0 and 1 otherwise. If DP2 >= 0, then this array must contain the coefficients of P2(x) in increasing powers of x. If DP2 = -1, then P2(x) is taken to be the zero polynomial, P2 is not referenced and can be supplied as a dummy array. P3 (input/output) DOUBLE PRECISION array, dimension (lenp3) where lenp3 = MAX(DP1+DP2,DP3,0) + 1. On entry, if DP3 >= 0, then this array must contain the coefficients of P3(x) in increasing powers of x. On entry, if DP3 = -1, then P3(x) is taken to be the zero polynomial. On exit, the leading (DP3+1) elements of this array contain the coefficients of P(x) in increasing powers of x unless DP3 = -1 on exit, in which case the coefficients of P(x) (the zero polynomial) are not stored in the array. This is the case, for instance, when ALPHA = 0.0 and P1(x) or P2(x) is the zero polynomial.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
Given real polynomials DP1 i DP2 i P1(x) = SUM a(i+1) * x , P2(x) = SUM b(i+1) * x and i=0 i=0 DP3 i P3(x) = SUM c(i+1) * x , i=0 the routine computes the coefficents of P(x) = P1(x) * P2(x) + DP3 i alpha * P3(x) = SUM d(i+1) * x as follows. i=0 Let e(i) = c(i) for 1 <= i <= DP3+1 and e(i) = 0 for i > DP3+1. Then if DP1 >= DP2, i d(i) = SUM a(k) * b(i-k+1) + f(i), for i = 1, ..., DP2+1, k=1 i d(i) = SUM a(k) * b(i-k+1) + f(i), for i = DP2+2, ..., DP1+1 k=i-DP2 and DP1+1 d(i) = SUM a(k) * b(i-k+1) + f(i) for i = DP1+2,...,DP1+DP2+1, k=i-DP2 where f(i) = alpha * e(i). Similar formulas hold for the case DP1 < DP2.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* MC01RD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER DP1MAX, DP2MAX, DP3MAX PARAMETER ( DP1MAX = 10, DP2MAX = 10, DP3MAX = 10 ) INTEGER LENP3 PARAMETER ( LENP3 = MAX(DP1MAX+DP2MAX,DP3MAX)+1 ) * .. Local Scalars .. DOUBLE PRECISION ALPHA INTEGER DP1, DP2, DP3, I, INFO * .. Local Arrays .. DOUBLE PRECISION P1(DP1MAX+1), P2(DP2MAX+1), P3(LENP3) * $ P3(DP1MAX+DP2MAX+DP3MAX+1) * .. External Subroutines .. EXTERNAL MC01RD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) DP1 IF ( DP1.LE.-2 .OR. DP1.GT.DP1MAX ) THEN WRITE ( NOUT, FMT = 99994 ) DP1 ELSE READ ( NIN, FMT = * ) ( P1(I), I = 1,DP1+1 ) READ ( NIN, FMT = * ) DP2 IF ( DP2.LE.-2 .OR. DP2.GT.DP2MAX ) THEN WRITE ( NOUT, FMT = 99993 ) DP2 ELSE READ ( NIN, FMT = * ) ( P2(I), I = 1,DP2+1 ) READ ( NIN, FMT = * ) DP3 IF ( DP3.LE.-2 .OR. DP3.GT.DP3MAX ) THEN WRITE ( NOUT, FMT = 99992 ) DP3 ELSE READ ( NIN, FMT = * ) ( P3(I), I = 1,DP3+1 ) END IF READ ( NIN, FMT = * ) ALPHA * Compute the coefficients of the polynomial P(x). CALL MC01RD( DP1, DP2, DP3, ALPHA, P1, P2, P3, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DP3 IF ( DP3.GE.0 ) THEN WRITE ( NOUT, FMT = 99996 ) DO 20 I = 0, DP3 WRITE ( NOUT, FMT = 99995 ) I, P3(I+1) 20 CONTINUE END IF END IF END IF END IF * STOP * 99999 FORMAT (' MC01RD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MC01RD = ',I2) 99997 FORMAT (' Degree of the resulting polynomial P(x) = ',I2) 99996 FORMAT (/' The coefficients of P(x) are ',//' power of x coe', $ 'fficient ') 99995 FORMAT (2X,I5,9X,F9.4) 99994 FORMAT (/' DP1 is out of range.',/' DP1 = ',I5) 99993 FORMAT (/' DP2 is out of range.',/' DP2 = ',I5) 99992 FORMAT (/' DP3 is out of range.',/' DP3 = ',I5) ENDProgram Data
MC01RD EXAMPLE PROGRAM DATA 1 1.00 2.50 2 1.00 0.10 -0.40 1 1.15 1.50 -2.20Program Results
MC01RD EXAMPLE PROGRAM RESULTS Degree of the resulting polynomial P(x) = 3 The coefficients of P(x) are power of x coefficient 0 -1.5300 1 -0.7000 2 -0.1500 3 -1.0000