Purpose
To calculate, for a given real polynomial P(x) and a real scalar alpha, the leading K coefficients of the shifted polynomial K-1 P(x) = q(1) + q(2) * (x-alpha) + ... + q(K) * (x-alpha) + ... using Horner's algorithm.Specification
SUBROUTINE MC01MD( DP, ALPHA, K, P, Q, INFO ) C .. Scalar Arguments .. INTEGER DP, INFO, K DOUBLE PRECISION ALPHA C .. Array Arguments .. DOUBLE PRECISION P(*), Q(*)Arguments
Input/Output Parameters
DP (input) INTEGER The degree of the polynomial P(x). DP >= 0. ALPHA (input) DOUBLE PRECISION The scalar value alpha of the problem. K (input) INTEGER The number of coefficients of the shifted polynomial to be computed. 1 <= K <= DP+1. P (input) DOUBLE PRECISION array, dimension (DP+1) This array must contain the coefficients of P(x) in increasing powers of x. Q (output) DOUBLE PRECISION array, dimension (DP+1) The leading K elements of this array contain the first K coefficients of the shifted polynomial in increasing powers of (x - alpha), and the next (DP-K+1) elements are used as internal workspace.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
Given the real polynomial 2 DP P(x) = p(1) + p(2) * x + p(3) * x + ... + p(DP+1) * x , the routine computes the leading K coefficients of the shifted polynomial K-1 P(x) = q(1) + q(2) * (x - alpha) + ... + q(K) * (x - alpha) as follows. Applying Horner's algorithm (see [1]) to P(x), i.e. dividing P(x) by (x-alpha), yields P(x) = q(1) + (x-alpha) * D(x), where q(1) is the value of the constant term of the shifted polynomial and D(x) is the quotient polynomial of degree (DP-1) given by 2 DP-1 D(x) = d(2) + d(3) * x + d(4) * x + ... + d(DP+1) * x . Applying Horner's algorithm to D(x) and subsequent quotient polynomials yields q(2) and q(3), q(4), ..., q(K) respectively. It follows immediately that q(1) = P(alpha), and in general (i-1) q(i) = P (alpha) / (i - 1)! for i = 1, 2, ..., K.References
[1] STOER, J. and BULIRSCH, R. Introduction to Numerical Analysis. Springer-Verlag. 1980.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* MC01MD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER DPMAX PARAMETER ( DPMAX = 20 ) * .. Local Scalars .. DOUBLE PRECISION ALPHA INTEGER DP, I, INFO, K * .. Local Arrays .. DOUBLE PRECISION P(DPMAX+1), Q(DPMAX+1) * .. External Subroutines .. EXTERNAL MC01MD * .. Executable Statements .. WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) DP, ALPHA, K IF ( DP.LE.-1 .OR. DP.GT.DPMAX ) THEN WRITE ( NOUT, FMT = 99995 ) DP ELSE READ ( NIN, FMT = * ) ( P(I), I = 1,DP+1 ) * Compute the leading K coefficients of the shifted polynomial. CALL MC01MD( DP, ALPHA, K, P, Q, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) ALPHA DO 20 I = 1, K WRITE ( NOUT, FMT = 99996 ) I - 1, Q(I) 20 CONTINUE END IF END IF * STOP * 99999 FORMAT (' MC01MD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MC01MD = ',I2) 99997 FORMAT (' ALPHA = ',F8.4,//' The coefficients of the shifted pol', $ 'ynomial are ',//' power of (x-ALPHA) coefficient ') 99996 FORMAT (5X,I5,15X,F9.4) 99995 FORMAT (/' DP is out of range.',/' DP = ',I5) ENDProgram Data
MC01MD EXAMPLE PROGRAM DATA 5 2.0 6 6.0 5.0 4.0 3.0 2.0 1.0Program Results
MC01MD EXAMPLE PROGRAM RESULTS ALPHA = 2.0000 The coefficients of the shifted polynomial are power of (x-ALPHA) coefficient 0 120.0000 1 201.0000 2 150.0000 3 59.0000 4 12.0000 5 1.0000