Purpose
To compute (a) F(delta) = exp(A*delta) and (b) H(delta) = Int[F(s) ds] from s = 0 to s = delta, where A is a real N-by-N matrix and delta is a scalar value.Specification
SUBROUTINE MB05ND( N, DELTA, A, LDA, EX, LDEX, EXINT, LDEXIN, $ TOL, IWORK, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDEX, LDEXIN, LDWORK, N DOUBLE PRECISION DELTA, TOL C .. Array Arguments .. INTEGER IWORK(*) DOUBLE PRECISION A(LDA,*), DWORK(*), EX(LDEX,*), EXINT(LDEXIN,*)Arguments
Input/Output Parameters
N (input) INTEGER The order of the matrix A. N >= 0. DELTA (input) DOUBLE PRECISION The scalar value delta of the problem. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the matrix A of the problem. (Array A need not be set if DELTA = 0.) LDA INTEGER The leading dimension of array A. LDA >= max(1,N). EX (output) DOUBLE PRECISION array, dimension (LDEX,N) The leading N-by-N part of this array contains an approximation to F(delta). LDEX INTEGER The leading dimension of array EX. LDEX >= MAX(1,N). EXINT (output) DOUBLE PRECISION array, dimension (LDEXIN,N) The leading N-by-N part of this array contains an approximation to H(delta). LDEXIN INTEGER The leading dimension of array EXINT. LDEXIN >= MAX(1,N).Tolerances
TOL DOUBLE PRECISION The tolerance to be used in determining the order of the Pade approximation to H(t), where t is a scale factor determined by the routine. A reasonable value for TOL may be SQRT(EPS), where EPS is the machine precision (see LAPACK Library routine DLAMCH).Workspace
IWORK INTEGER array, dimension (N) DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= MAX(1,N*(N+1)). For optimum performance LDWORK should be larger (2*N*N).Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; > 0: if INFO = i, the (i,i) element of the denominator of the Pade approximation is zero, so the denominator is exactly singular; = N+1: if DELTA = (delta * frobenius norm of matrix A) is probably too large to permit meaningful computation. That is, DELTA > SQRT(BIG), where BIG is a representable number near the overflow threshold of the machine (see LAPACK Library Routine DLAMCH).Method
This routine uses a Pade approximation to H(t) for some small value of t (where 0 < t <= delta) and then calculates F(t) from H(t). Finally, the results are re-scaled to give F(delta) and H(delta). For a detailed description of the implementation of this algorithm see [1].References
[1] Benson, C.J. The numerical evaluation of the matrix exponential and its integral. Report 82/03, Control Systems Research Group, School of Electronic Engineering and Computer Science, Kingston Polytechnic, January 1982. [2] Ward, R.C. Numerical computation of the matrix exponential with accuracy estimate. SIAM J. Numer. Anal., 14, pp. 600-610, 1977. [3] Moler, C.B. and Van Loan, C.F. Nineteen Dubious Ways to Compute the Exponential of a Matrix. SIAM Rev., 20, pp. 801-836, 1978.Numerical Aspects
3 The algorithm requires 0(N ) operations.Further Comments
NoneExample
Program Text
* MB05ND EXAMPLE PROGRAM TEXT. * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX PARAMETER ( NMAX = 20 ) INTEGER LDA, LDEX, LDEXIN, LDWORK PARAMETER ( LDA = NMAX, LDEX = NMAX, LDEXIN = NMAX, $ LDWORK = NMAX*( NMAX+1 ) ) * .. Local Scalars .. DOUBLE PRECISION DELTA, TOL INTEGER I, INFO, J, N * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), EX(LDEX,NMAX), $ EXINT(LDEXIN,NMAX) INTEGER IWORK(NMAX) * .. External Subroutines .. EXTERNAL MB05ND * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, DELTA, TOL IF ( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99994 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) * Find the matrix exponential of A*DELTA and its integral. CALL MB05ND( N, DELTA, A, LDA, EX, LDEX, EXINT, LDEXIN, TOL, $ IWORK, DWORK, LDWORK, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99996 ) ( EX(I,J), J = 1,N ) 20 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 40 I = 1, N WRITE ( NOUT, FMT = 99996 ) ( EXINT(I,J), J = 1,N ) 40 CONTINUE END IF END IF STOP * 99999 FORMAT (' MB05ND EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB05ND = ',I2) 99997 FORMAT (' The solution matrix exp(A*DELTA) is ') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' and its integral is ') 99994 FORMAT (/' N is out of range.',/' N = ',I5) ENDProgram Data
MB05ND EXAMPLE PROGRAM DATA 5 0.1 0.0001 5.0 4.0 3.0 2.0 1.0 1.0 6.0 0.0 4.0 3.0 2.0 0.0 7.0 6.0 5.0 1.0 3.0 1.0 8.0 7.0 2.0 5.0 7.0 1.0 9.0Program Results
MB05ND EXAMPLE PROGRAM RESULTS The solution matrix exp(A*DELTA) is 1.8391 0.9476 0.7920 0.8216 0.7811 0.3359 2.2262 0.4013 1.0078 1.0957 0.6335 0.6776 2.6933 1.6155 1.8502 0.4804 1.1561 0.9110 2.7461 2.0854 0.7105 1.4244 1.8835 1.0966 3.4134 and its integral is 0.1347 0.0352 0.0284 0.0272 0.0231 0.0114 0.1477 0.0104 0.0369 0.0368 0.0218 0.0178 0.1624 0.0580 0.0619 0.0152 0.0385 0.0267 0.1660 0.0732 0.0240 0.0503 0.0679 0.0317 0.1863