Purpose
To transform a Hamiltonian matrix ( A G ) H = ( T ) (1) ( Q -A ) into a square-reduced Hamiltonian matrix ( A' G' ) H' = ( T ) (2) ( Q' -A' ) T by an orthogonal symplectic similarity transformation H' = U H U, where ( U1 U2 ) U = ( ). (3) ( -U2 U1 ) T The square-reduced Hamiltonian matrix satisfies Q'A' - A' Q' = 0, and 2 T 2 ( A'' G'' ) H' := (U H U) = ( T ). ( 0 A'' ) In addition, A'' is upper Hessenberg and G'' is skew symmetric. The square roots of the eigenvalues of A'' = A'*A' + G'*Q' are the eigenvalues of H.Specification
SUBROUTINE MB04ZD( COMPU, N, A, LDA, QG, LDQG, U, LDU, DWORK, INFO $ ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDQG, LDU, N CHARACTER COMPU C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), DWORK(*), QG(LDQG,*), U(LDU,*)Arguments
Mode Parameters
COMPU CHARACTER*1 Indicates whether the orthogonal symplectic similarity transformation matrix U in (3) is returned or accumulated into an orthogonal symplectic matrix, or if the transformation matrix is not required, as follows: = 'N': U is not required; = 'I' or 'F': on entry, U need not be set; on exit, U contains the orthogonal symplectic matrix U from (3); = 'V' or 'A': the orthogonal symplectic similarity transformations are accumulated into U; on input, U must contain an orthogonal symplectic matrix S; on exit, U contains S*U with U from (3). See the description of U below for details.Input/Output Parameters
N (input) INTEGER The order of the matrices A, G, and Q. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On input, the leading N-by-N part of this array must contain the upper left block A of the Hamiltonian matrix H in (1). On output, the leading N-by-N part of this array contains the upper left block A' of the square-reduced Hamiltonian matrix H' in (2). LDA INTEGER The leading dimension of the array A. LDA >= MAX(1,N). QG (input/output) DOUBLE PRECISION array, dimension (LDQG,N+1) On input, the leading N-by-N lower triangular part of this array must contain the lower triangle of the lower left symmetric block Q of the Hamiltonian matrix H in (1), and the N-by-N upper triangular part of the submatrix in the columns 2 to N+1 of this array must contain the upper triangle of the upper right symmetric block G of H in (1). So, if i >= j, then Q(i,j) = Q(j,i) is stored in QG(i,j) and G(i,j) = G(j,i) is stored in QG(j,i+1). On output, the leading N-by-N lower triangular part of this array contains the lower triangle of the lower left symmetric block Q', and the N-by-N upper triangular part of the submatrix in the columns 2 to N+1 of this array contains the upper triangle of the upper right symmetric block G' of the square-reduced Hamiltonian matrix H' in (2). LDQG INTEGER The leading dimension of the array QG. LDQG >= MAX(1,N). U (input/output) DOUBLE PRECISION array, dimension (LDU,2*N) If COMPU = 'N', then this array is not referenced. If COMPU = 'I' or 'F', then the input contents of this array are not specified. On output, the leading N-by-(2*N) part of this array contains the first N rows of the orthogonal symplectic matrix U in (3). If COMPU = 'V' or 'A', then, on input, the leading N-by-(2*N) part of this array must contain the first N rows of an orthogonal symplectic matrix S. On output, the leading N-by-(2*N) part of this array contains the first N rows of the product S*U where U is the orthogonal symplectic matrix from (3). The storage scheme implied by (3) is used for orthogonal symplectic matrices, i.e., only the first N rows are stored, as they contain all relevant information. LDU INTEGER The leading dimension of the array U. LDU >= MAX(1,N), if COMPU <> 'N'; LDU >= 1, if COMPU = 'N'.Workspace
DWORK DOUBLE PRECISION array, dimension (2*N)Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, then the i-th argument had an illegal value.Method
The Hamiltonian matrix H is transformed into a square-reduced Hamiltonian matrix H' using the implicit version of Van Loan's method as proposed in [1,2,3].References
[1] Van Loan, C. F. A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix. Linear Algebra and its Applications, 61, pp. 233-251, 1984. [2] Byers, R. Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation. Ph. D. Thesis, Cornell University, Ithaca, NY, January 1983. [3] Benner, P., Byers, R., and Barth, E. Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices. I: The Square-Reduced Method. ACM Trans. Math. Software, 26, 1, pp. 49-77, 2000.Numerical Aspects
This algorithm requires approximately 20*N**3 flops for transforming H into square-reduced form. If the transformations are required, this adds another 8*N**3 flops. The method is strongly backward stable in the sense that if H' and U are the computed square-reduced Hamiltonian and computed orthogonal symplectic similarity transformation, then there is an orthogonal symplectic matrix T and a Hamiltonian matrix M such that H T = T M || T - U || <= c1 * eps || H' - M || <= c2 * eps * || H || where c1, c2 are modest constants depending on the dimension N and eps is the machine precision. Eigenvalues computed by explicitly forming the upper Hessenberg matrix A'' = A'A' + G'Q', with A', G', and Q' as in (2), and applying the Hessenberg QR iteration to A'' are exactly eigenvalues of a perturbed Hamiltonian matrix H + E, where || E || <= c3 * sqrt(eps) * || H ||, and c3 is a modest constant depending on the dimension N and eps is the machine precision. Moreover, if the norm of H and an eigenvalue lambda are of roughly the same magnitude, the computed eigenvalue is essentially as accurate as the computed eigenvalue from traditional methods. See [1] or [2].Further Comments
NoneExample
Program Text
* MB04ZD EXAMPLE PROGRAM TEXT. * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX PARAMETER ( NMAX = 20 ) INTEGER LDA, LDQG, LDU PARAMETER ( LDA = NMAX, LDQG = NMAX, LDU = NMAX ) INTEGER LDWORK PARAMETER ( LDWORK = ( NMAX+NMAX )*( NMAX+NMAX+1 ) ) DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. Local Scalars .. INTEGER I, INFO, IJ, J, JI, N, POS, WPOS CHARACTER*1 COMPU * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), QG(LDQG,NMAX+1), $ U(LDU,NMAX) * .. External Subroutines .. EXTERNAL DCOPY, DGEMM, DSYMV, MB04ZD * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, COMPU IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99998 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) READ ( NIN, FMT = * ) ( ( QG(J,I+1), I = J,N ), J = 1,N ) READ ( NIN, FMT = * ) ( ( QG(I,J), I = J,N ), J = 1,N ) * Square-reduce by symplectic orthogonal similarity. CALL MB04ZD( COMPU, N, A, LDA, QG, LDQG, U, LDU, DWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99997 ) INFO ELSE * Show the square-reduced Hamiltonian. WRITE ( NOUT, FMT = 99996 ) DO 10 I = 1, N WRITE ( NOUT, FMT = 99994 ) ( A(I,J), J = 1,N ), $ ( QG(J,I+1), J = 1,I-1 ), ( QG(I,J+1), J = I,N ) 10 CONTINUE DO 20 I = 1, N WRITE ( NOUT, FMT = 99994 ) ( QG(I,J), J = 1,I-1 ), $ ( QG(J,I), J = I,N ), ( -A(J,I), J = 1,N ) 20 CONTINUE * Show the square of H. WRITE ( NOUT, FMT = 99995 ) WPOS = ( NMAX+NMAX )*( NMAX+NMAX ) * T * Compute N11 = A*A + G*Q and set N22 = N11 . CALL DGEMM( 'N', 'N', N, N, N, ONE, A, LDA, A, LDA, ZERO, $ DWORK, N+N ) DO 30 I = 1, N CALL DCOPY( N-I+1, QG(I,I), 1, DWORK(WPOS+I), 1 ) CALL DCOPY( I-1, QG(I,1), LDQG, DWORK(WPOS+1), 1 ) CALL DSYMV( 'U', N, ONE, QG(1,2), LDQG, DWORK(WPOS+1), 1, $ ONE, DWORK((I-1)*(N+N)+1), 1 ) POS = N*( N+N ) + N + I CALL DCOPY( N, DWORK((I-1)*(N+N)+1), 1, DWORK(POS), N+N ) 30 CONTINUE DO 40 I = 1, N CALL DSYMV( 'U', N, -ONE, QG(1,2), LDQG, A(I,1), LDA, $ ZERO, DWORK((N+I-1)*(N+N)+1), 1 ) CALL DSYMV( 'L', N, ONE, QG, LDQG, A(1,I), 1, ZERO, $ DWORK((I-1)*(N+N)+N+1), 1 ) 40 CONTINUE DO 60 J = 1, N DO 50 I = J, N IJ = ( N+J-1 )*( N+N ) + I JI = ( N+I-1 )*( N+N ) + J DWORK(IJ) = DWORK(IJ) - DWORK(JI) DWORK(JI) = -DWORK(IJ) IJ = N + I + ( J-1 )*( N+N ) JI = N + J + ( I-1 )*( N+N ) DWORK(IJ) = DWORK(IJ) - DWORK(JI) DWORK(JI) = -DWORK(IJ) 50 CONTINUE 60 CONTINUE DO 70 I = 1, N+N WRITE ( NOUT, FMT = 99994 ) $ ( DWORK(I+(J-1)*(N+N) ), J = 1,N+N ) 70 CONTINUE ENDIF END IF STOP * 99999 FORMAT (' MB04ZD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (/' N is out of range.',/' N = ',I5) 99997 FORMAT (' INFO on exit from MB04ZD = ',I2) 99996 FORMAT (/' The square-reduced Hamiltonian is ') 99995 FORMAT (/' The square of the square-reduced Hamiltonian is ') 99994 FORMAT (1X,8(F10.4)) ENDProgram Data
MB04ZD EXAMPLE PROGRAM DATA 3 N 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1.0 1.0 1.0 2.0 2.0 3.0 7.0 6.0 5.0 8.0 4.0 9.0Program Results
MB04ZD EXAMPLE PROGRAM RESULTS The square-reduced Hamiltonian is 1.0000 3.3485 0.3436 1.0000 1.9126 -0.1072 6.7566 11.0750 -0.3014 1.9126 8.4479 -1.0790 2.3478 1.6899 -2.3868 -0.1072 -1.0790 -2.9871 7.0000 8.6275 -0.6352 -1.0000 -6.7566 -2.3478 8.6275 16.2238 -0.1403 -3.3485 -11.0750 -1.6899 -0.6352 -0.1403 1.2371 -0.3436 0.3014 2.3868 The square of the square-reduced Hamiltonian is 48.0000 80.6858 -2.5217 0.0000 1.8590 -10.5824 167.8362 298.4815 -4.0310 -1.8590 0.0000 -33.1160 0.0000 4.5325 2.5185 10.5824 33.1160 0.0000 0.0000 0.0000 0.0000 48.0000 167.8362 0.0000 0.0000 0.0000 0.0000 80.6858 298.4815 4.5325 0.0000 0.0000 0.0000 -2.5217 -4.0310 2.5185