Purpose
To compute a symplectic URV (SURV) decomposition of a real 2N-by-2N matrix H, [ op(A) G ] [ op(R11) R12 ] H = [ ] = U R V' = U * [ ] * V' , [ Q op(B) ] [ 0 op(R22) ] where A, B, G, Q, R12 are real N-by-N matrices, op(R11) is a real N-by-N upper triangular matrix, op(R22) is a real N-by-N lower Hessenberg matrix and U, V are 2N-by-2N orthogonal symplectic matrices. Blocked version.Specification
SUBROUTINE MB04TB( TRANA, TRANB, N, ILO, A, LDA, B, LDB, G, LDG, $ Q, LDQ, CSL, CSR, TAUL, TAUR, DWORK, LDWORK, $ INFO ) C .. Scalar Arguments .. CHARACTER TRANA, TRANB INTEGER ILO, INFO, LDA, LDB, LDG, LDQ, LDWORK, N C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), B(LDB,*), CSL(*), CSR(*), DWORK(*), $ G(LDG,*), Q(LDQ,*), TAUL(*), TAUR(*)Arguments
Mode Parameters
TRANA CHARACTER*1 Specifies the form of op( A ) as follows: = 'N': op( A ) = A; = 'T': op( A ) = A'; = 'C': op( A ) = A'. TRANB CHARACTER*1 Specifies the form of op( B ) as follows: = 'N': op( B ) = B; = 'T': op( B ) = B'; = 'C': op( B ) = B'.Input/Output Parameters
N (input) INTEGER The order of the matrix A. N >= 0. ILO (input) INTEGER It is assumed that op(A) is already upper triangular, op(B) is lower triangular and Q is zero in rows and columns 1:ILO-1. ILO is normally set by a previous call to MB04DD; otherwise it should be set to 1. 1 <= ILO <= N+1, if N > 0; ILO = 1, if N = 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the matrix A. On exit, the leading N-by-N part of this array contains the triangular matrix R11, and in the zero part information about the elementary reflectors used to compute the SURV decomposition. LDA INTEGER The leading dimension of the array A. LDA >= MAX(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,N) On entry, the leading N-by-N part of this array must contain the matrix B. On exit, the leading N-by-N part of this array contains the Hessenberg matrix R22, and in the zero part information about the elementary reflectors used to compute the SURV decomposition. LDB INTEGER The leading dimension of the array B. LDB >= MAX(1,N). G (input/output) DOUBLE PRECISION array, dimension (LDG,N) On entry, the leading N-by-N part of this array must contain the matrix G. On exit, the leading N-by-N part of this array contains the matrix R12. LDG INTEGER The leading dimension of the array G. LDG >= MAX(1,N). Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) On entry, the leading N-by-N part of this array must contain the matrix Q. On exit, the leading N-by-N part of this array contains information about the elementary reflectors used to compute the SURV decomposition. LDQ INTEGER The leading dimension of the array Q. LDQ >= MAX(1,N). CSL (output) DOUBLE PRECISION array, dimension (2N) On exit, the first 2N elements of this array contain the cosines and sines of the symplectic Givens rotations applied from the left-hand side used to compute the SURV decomposition. CSR (output) DOUBLE PRECISION array, dimension (2N-2) On exit, the first 2N-2 elements of this array contain the cosines and sines of the symplectic Givens rotations applied from the right-hand side used to compute the SURV decomposition. TAUL (output) DOUBLE PRECISION array, dimension (N) On exit, the first N elements of this array contain the scalar factors of some of the elementary reflectors applied form the left-hand side. TAUR (output) DOUBLE PRECISION array, dimension (N-1) On exit, the first N-1 elements of this array contain the scalar factors of some of the elementary reflectors applied form the right-hand side.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK, (16*N + 5)*NB, where NB is the optimal block size determined by the function UE01MD. On exit, if INFO = -16, DWORK(1) returns the minimum value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= MAX(1,N). If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message related to LDWORK is issued by XERBLA.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
The matrices U and V are represented as products of symplectic reflectors and Givens rotations U = diag( HU(1),HU(1) ) GU(1) diag( FU(1),FU(1) ) diag( HU(2),HU(2) ) GU(2) diag( FU(2),FU(2) ) .... diag( HU(n),HU(n) ) GU(n) diag( FU(n),FU(n) ), V = diag( HV(1),HV(1) ) GV(1) diag( FV(1),FV(1) ) diag( HV(2),HV(2) ) GV(2) diag( FV(2),FV(2) ) .... diag( HV(n-1),HV(n-1) ) GV(n-1) diag( FV(n-1),FV(n-1) ). Each HU(i) has the form HU(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in Q(i+1:n,i), and tau in Q(i,i). Each FU(i) has the form FU(i) = I - nu * w * w' where nu is a real scalar, and w is a real vector with w(1:i-1) = 0 and w(i) = 1; w(i+1:n) is stored on exit in A(i+1:n,i), if op(A) = 'N', and in A(i,i+1:n), otherwise. The scalar nu is stored in TAUL(i). Each GU(i) is a Givens rotation acting on rows i and n+i, where the cosine is stored in CSL(2*i-1) and the sine in CSL(2*i). Each HV(i) has the form HV(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in Q(i,i+2:n), and tau in Q(i,i+1). Each FV(i) has the form FV(i) = I - nu * w * w' where nu is a real scalar, and w is a real vector with w(1:i) = 0 and w(i+1) = 1; w(i+2:n) is stored on exit in B(i,i+2:n), if op(B) = 'N', and in B(i+2:n,i), otherwise. The scalar nu is stored in TAUR(i). Each GV(i) is a Givens rotation acting on columns i+1 and n+i+1, where the cosine is stored in CSR(2*i-1) and the sine in CSR(2*i).Numerical Aspects
The algorithm requires 80/3*N**3 + ( 64*NB + 77 )*N**2 + ( -16*NB + 48 )*NB*N + O(N) floating point operations, where NB is the used block size, and is numerically backward stable.References
[1] Benner, P., Mehrmann, V., and Xu, H. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math., Vol 78 (3), pp. 329-358, 1998. [2] Kressner, D. Block algorithms for orthogonal symplectic factorizations. BIT, 43 (4), pp. 775-790, 2003.Further Comments
NoneExample
Program Text
* MB04TB/MB04WR EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NBMAX, NMAX PARAMETER ( NBMAX = 64, NMAX = 421 ) INTEGER LDA, LDB, LDG, LDQ, LDRES, LDU1, LDU2, LDV1, $ LDV2, LDWORK PARAMETER ( LDA = NMAX, LDB = NMAX, LDG = NMAX, LDQ = NMAX, $ LDRES = NMAX, LDU1 = NMAX, LDU2 = NMAX, $ LDV1 = NMAX, LDV2 = NMAX, $ LDWORK = NBMAX*( 16*NMAX + 1 ) ) * .. Local Scalars .. CHARACTER*1 TRANA, TRANB, TRANV1 INTEGER I, INFO, J, N DOUBLE PRECISION TEMP * .. Local Arrays .. DOUBLE PRECISION A(LDA, NMAX), B(LDB, NMAX), CSL(2*NMAX), $ CSR(2*NMAX), DWORK(LDWORK), G(LDG, NMAX), $ Q(LDQ, NMAX), RES(LDRES,5*NMAX), TAUL(NMAX), $ TAUR(NMAX), U1(LDU1, NMAX), U2(LDU2, NMAX), $ V1(LDV1, NMAX), V2(LDV2, NMAX) * .. External Functions .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLANGE, DLAPY2, MA02JD EXTERNAL DLANGE, DLAPY2, LSAME, MA02JD * .. External Subroutines .. EXTERNAL DGEMM, DLACPY, DLASET, MB04TB, MB04WR * .. Executable Statements .. WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, TRANA, TRANB IF( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99992 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) CALL DLACPY( 'All', N, N, A, LDA, RES, LDRES ) READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,N ), I = 1,N ) CALL DLACPY( 'All', N, N, B, LDB, RES(1,N+1), LDRES ) READ ( NIN, FMT = * ) ( ( G(I,J), J = 1,N ), I = 1,N ) CALL DLACPY( 'All', N, N, G, LDG, RES(1,2*N+1), LDRES ) READ ( NIN, FMT = * ) ( ( Q(I,J), J = 1,N ), I = 1,N ) CALL DLACPY( 'All', N, N, Q, LDQ, RES(1,3*N+1), LDRES ) CALL MB04TB( TRANA, TRANB, N, 1, A, LDA, B, LDB, G, LDG, Q, $ LDQ, CSL, CSR, TAUL, TAUR, DWORK, LDWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE CALL DLACPY( 'All', N, N, A, LDA, U1, LDU1 ) CALL DLACPY( 'All', N, N, Q, LDQ, U2, LDU2 ) CALL MB04WR( 'U', TRANA, N, 1, U1, LDU1, U2, LDU2, CSL, $ TAUL, DWORK, LDWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99997 ) INFO ELSE CALL DLACPY( 'All', N, N, Q, LDQ, V2, LDV2 ) CALL DLACPY( 'All', N, N, B, LDB, V1, LDV1 ) CALL MB04WR( 'V', TRANB, N, 1, V1, LDV1, V2, LDV2, $ CSR, TAUR, DWORK, LDWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99997 ) INFO ELSE WRITE ( NOUT, FMT = 99996 ) IF ( LSAME( TRANA, 'N' ) ) THEN DO 10 I = 1, N WRITE (NOUT, FMT = 99993) $ ( U1(I,J), J = 1,N ), ( U2(I,J), J = 1,N ) 10 CONTINUE DO 20 I = 1, N WRITE (NOUT, FMT = 99993) $ ( -U2(I,J), J = 1,N ), ( U1(I,J), J = 1,N ) 20 CONTINUE WRITE ( NOUT, FMT = 99991 ) MA02JD( .FALSE., $ .FALSE., N, U1, LDU1, U2, LDU2, $ RES(1,4*N+1), LDRES ) ELSE DO 30 I = 1, N WRITE (NOUT, FMT = 99993) $ ( U1(J,I), J = 1,N ), ( U2(I,J), J = 1,N ) 30 CONTINUE DO 40 I = 1, N WRITE (NOUT, FMT = 99993) $ ( -U2(I,J), J = 1,N ), ( U1(J,I), J = 1,N ) 40 CONTINUE WRITE ( NOUT, FMT = 99991 ) MA02JD( .TRUE., $ .FALSE., N, U1, LDU1, U2, LDU2, $ RES(1,4*N+1), LDRES ) END IF WRITE ( NOUT, FMT = 99995 ) CALL DLASET( 'All', N, N, ZERO, ZERO, Q, LDQ ) IF ( LSAME( TRANA, 'N' ) ) THEN CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, $ A(2,1), LDA ) DO 50 I = 1, N WRITE (NOUT, FMT = 99993) $ ( A(I,J), J = 1,N ), ( G(I,J), J = 1,N ) 50 CONTINUE ELSE CALL DLASET( 'Upper', N-1, N-1, ZERO, ZERO, $ A(1,2), LDA ) DO 60 I = 1, N WRITE (NOUT, FMT = 99993) $ ( A(J,I), J = 1,N ), ( G(I,J), J = 1,N ) 60 CONTINUE END IF IF ( LSAME( TRANB, 'N' ) ) THEN IF ( N.GT.1 ) THEN CALL DLASET( 'Upper', N-2, N-2, ZERO, ZERO, $ B(1,3), LDB ) END IF DO 70 I = 1, N WRITE (NOUT, FMT = 99993) $ ( Q(I,J), J = 1,N ), ( B(I,J), J = 1,N ) 70 CONTINUE ELSE IF ( N.GT.1 ) THEN C CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, C $ B(3,1), LDB ) END IF DO 80 I = 1, N WRITE (NOUT, FMT = 99993) $ ( Q(I,J), J = 1,N ), ( B(J,I), J = 1,N ) 80 CONTINUE END IF C IF ( LSAME( TRANB, 'N' ) ) THEN TRANV1 = 'T' ELSE TRANV1 = 'N' END IF CALL DGEMM( TRANA, TRANV1, N, N, N, ONE, RES, LDRES, $ V1, LDV1, ZERO, RES(1,4*N+1), LDRES ) CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, $ -ONE, RES(1,2*N+1), LDRES, V2, LDV2, ONE, $ RES(1,4*N+1), LDRES ) CALL DGEMM( TRANA, TRANA, N, N, N, -ONE, U1, LDU1, $ A, LDA, ONE, RES(1,4*N+1), LDRES ) TEMP = DLANGE( 'Frobenius', N, N, RES(1,4*N+1), $ LDRES, DWORK ) CALL DGEMM( TRANA, 'Transpose', N, N, N, ONE, RES, $ LDRES, V2, LDV2, ZERO, RES(1,4*N+1), $ LDRES ) CALL DGEMM( 'No Transpose', TRANV1, N, N, N, ONE, $ RES(1,2*N+1), LDRES, V1, LDV1, ONE, $ RES(1,4*N+1), LDRES ) CALL DGEMM( TRANA, 'No Transpose', N, N, N, -ONE, $ U1, LDU1, G, LDG, ONE, RES(1,4*N+1), $ LDRES ) CALL DGEMM( 'No Transpose', TRANB, N, N, N, -ONE, $ U2, LDU2, B, LDB, ONE, RES(1,4*N+1), $ LDRES ) TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, $ RES(1,4*N+1), LDRES, DWORK ) ) CALL DGEMM( 'No Transpose', TRANV1, N, N, N, ONE, $ RES(1,3*N+1), LDRES, V1, LDV1, ZERO, $ RES(1,4*N+1), LDRES ) CALL DGEMM( TRANB, 'Transpose', N, N, N, -ONE, $ RES(1,N+1), LDRES, V2, LDV2, ONE, $ RES(1,4*N+1), LDRES ) CALL DGEMM( 'No Transpose', TRANA, N, N, N, ONE, $ U2, LDU2, A, LDA, ONE, RES(1,4*N+1), $ LDRES ) TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, $ RES(1,4*N+1), LDRES, DWORK ) ) CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, ONE, $ RES(1,3*N+1), LDRES, V2, LDV2, ZERO, $ RES(1,4*N+1), LDRES ) CALL DGEMM( TRANB, TRANV1, N, N, N, ONE, RES(1,N+1), $ LDRES, V1, LDV1, ONE, RES(1,4*N+1), $ LDRES ) CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, $ ONE, U2, LDU2, G, LDG, ONE, RES(1,4*N+1), $ LDRES ) CALL DGEMM( TRANA, TRANB, N, N, N, -ONE, U1, LDU1, $ B, LDB, ONE, RES(1,4*N+1), LDRES ) TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, $ RES(1,4*N+1), LDRES, DWORK ) ) WRITE ( NOUT, FMT = 99990 ) TEMP C WRITE ( NOUT, FMT = 99994 ) IF ( LSAME( TRANB, 'N' ) ) THEN DO 90 I = 1, N WRITE (NOUT, FMT = 99993) $ ( V1(J,I), J = 1,N ), ( V2(J,I), J = 1,N ) 90 CONTINUE DO 100 I = 1, N WRITE (NOUT, FMT = 99993) $ ( -V2(J,I), J = 1,N ), ( V1(J,I), J = 1,N ) 100 CONTINUE WRITE ( NOUT, FMT = 99989 ) MA02JD( .TRUE., $ .TRUE., N, V1, LDV1, V2, LDV2, $ RES(1,4*N+1), LDRES ) ELSE DO 110 I = 1, N WRITE (NOUT, FMT = 99993) $ ( V1(I,J), J = 1,N ), ( V2(J,I), J = 1,N ) 110 CONTINUE DO 120 I = 1, N WRITE (NOUT, FMT = 99993) $ ( -V2(J,I), J = 1,N ), ( V1(I,J), J = 1,N ) 120 CONTINUE WRITE ( NOUT, FMT = 99989 ) MA02JD( .FALSE., $ .TRUE., N, V1, LDV1, V2, LDV2, $ RES(1,4*N+1), LDRES ) END IF END IF END IF END IF END IF * STOP * 99999 FORMAT (' MB04TB EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB04TB = ',I2) 99997 FORMAT (' INFO on exit from MB04WR = ',I2) 99996 FORMAT (' The orthogonal symplectic factor U is ') 99995 FORMAT (/' The factor R is ') 99994 FORMAT (/' The orthogonal symplectic factor V is ') 99993 FORMAT (20(1X,F9.4)) 99992 FORMAT (/' N is out of range.',/' N = ',I5) 99991 FORMAT (/' Orthogonality of U: || U^T U - I ||_F = ',G7.2) 99990 FORMAT (/' Residual: || H*V - U*R ||_F = ',G7.2) 99989 FORMAT (/' Orthogonality of V: || V^T V - I ||_F = ',G7.2) ENDProgram Data
MB04TB EXAMPLE PROGRAM DATA 5 N N 0.4643 0.3655 0.6853 0.5090 0.3718 0.3688 0.6460 0.4227 0.6798 0.5135 0.7458 0.5043 0.9419 0.9717 0.9990 0.7140 0.4941 0.7802 0.5272 0.1220 0.7418 0.0339 0.7441 0.0436 0.6564 -0.4643 -0.3688 -0.7458 -0.7140 -0.7418 -0.3655 -0.6460 -0.5043 -0.4941 -0.0339 -0.6853 -0.4227 -0.9419 -0.7802 -0.7441 -0.5090 -0.6798 -0.9717 -0.5272 -0.0436 -0.3718 -0.5135 -0.9990 -0.1220 -0.6564 0.7933 1.5765 1.0711 1.0794 0.8481 1.5765 0.1167 1.5685 0.8756 0.5037 1.0711 1.5685 0.9902 0.3858 0.2109 1.0794 0.8756 0.3858 1.8834 1.4338 0.8481 0.5037 0.2109 1.4338 0.1439 1.0786 1.5264 1.1721 1.5343 0.4756 1.5264 0.8644 0.6872 1.1379 0.6499 1.1721 0.6872 1.5194 1.1197 1.0158 1.5343 1.1379 1.1197 0.6612 0.2004 0.4756 0.6499 1.0158 0.2004 1.2188Program Results
MB04TB EXAMPLE PROGRAM RESULTS The orthogonal symplectic factor U is -0.1513 0.0756 -0.0027 0.1694 -0.2999 0.3515 -0.4843 0.6545 -0.1995 -0.1627 -0.1202 0.2320 0.1662 -0.2835 -0.0508 0.4975 0.3319 -0.2686 -0.4186 -0.4649 -0.2431 0.2724 0.3439 0.3954 0.0236 0.3820 -0.2863 -0.4324 0.3706 0.1984 -0.2327 -0.1509 -0.3710 -0.1240 -0.0393 0.5000 0.3659 0.1429 0.0493 0.6015 -0.2418 -0.2928 -0.0836 -0.5549 0.4824 0.1550 -0.4441 -0.0396 0.2376 -0.1702 -0.3515 0.4843 -0.6545 0.1995 0.1627 -0.1513 0.0756 -0.0027 0.1694 -0.2999 -0.4975 -0.3319 0.2686 0.4186 0.4649 -0.1202 0.2320 0.1662 -0.2835 -0.0508 -0.3820 0.2863 0.4324 -0.3706 -0.1984 -0.2431 0.2724 0.3439 0.3954 0.0236 -0.5000 -0.3659 -0.1429 -0.0493 -0.6015 -0.2327 -0.1509 -0.3710 -0.1240 -0.0393 -0.1550 0.4441 0.0396 -0.2376 0.1702 -0.2418 -0.2928 -0.0836 -0.5549 0.4824 Orthogonality of U: || U^T U - I ||_F = .17E-14 The factor R is -3.0684 4.6724 -0.2613 -0.1996 0.0208 -0.1071 -0.1355 -0.1400 0.4652 -0.5032 0.0000 -1.8037 -0.0301 -0.1137 0.1771 0.0277 0.3929 0.5424 0.5220 -0.4843 0.0000 0.0000 -0.7617 -0.1874 0.2557 0.1244 -0.0012 0.4091 0.5123 -0.3522 0.0000 0.0000 0.0000 -0.6931 -0.4293 -0.3718 0.1542 -0.3635 0.0336 -0.9832 0.0000 0.0000 0.0000 0.0000 0.6469 0.2074 0.0266 0.2028 0.1995 0.2517 0.0000 0.0000 0.0000 0.0000 0.0000 2.6325 -4.7377 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.2702 0.9347 -1.1210 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3219 -0.5394 0.1748 -0.4788 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1431 -0.1021 0.4974 -0.3565 -0.6402 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1622 -0.2368 0.6126 -0.7369 0.6915 Residual: || H*V - U*R ||_F = .76E-14 The orthogonal symplectic factor V is 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.4740 0.6013 -0.2299 -0.4282 0.0000 0.0061 -0.1732 0.3134 0.2220 0.0000 -0.5553 -0.2623 0.6622 -0.3042 0.0000 -0.0382 0.2453 -0.1662 0.0509 0.0000 -0.5563 0.0322 -0.1431 0.4461 0.0000 -0.0665 -0.4132 -0.3100 -0.4457 0.0000 -0.3872 -0.4022 -0.4194 0.3541 0.0000 -0.0406 0.3820 0.3006 0.3861 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0061 0.1732 -0.3134 -0.2220 0.0000 -0.4740 0.6013 -0.2299 -0.4282 0.0000 0.0382 -0.2453 0.1662 -0.0509 0.0000 -0.5553 -0.2623 0.6622 -0.3042 0.0000 0.0665 0.4132 0.3100 0.4457 0.0000 -0.5563 0.0322 -0.1431 0.4461 0.0000 0.0406 -0.3820 -0.3006 -0.3861 0.0000 -0.3872 -0.4022 -0.4194 0.3541 Orthogonality of V: || V^T V - I ||_F = .17E-14