Purpose
To apply the orthogonal symplectic block reflector [ I+V*T*V' V*R*S*V' ] Q = [ ] [ -V*R*S*V' I+V*T*V' ] or its transpose to a real 2m-by-n matrix [ op(A); op(B) ] from the left. The k-by-k upper triangular blocks of the matrices [ S1 ] [ T11 T12 T13 ] R = [ R1 R2 R3 ], S = [ S2 ], T = [ T21 T22 T23 ], [ S3 ] [ T31 T32 T33 ] with R2 unit and S1, R3, T21, T31, T32 strictly upper triangular, are stored rowwise in the arrays RS and T, respectively.Specification
SUBROUTINE MB04QC( STRAB, TRANA, TRANB, TRANQ, DIRECT, STOREV, $ STOREW, M, N, K, V, LDV, W, LDW, RS, LDRS, T, $ LDT, A, LDA, B, LDB, DWORK ) C .. Scalar Arguments .. CHARACTER DIRECT, STOREV, STOREW, STRAB, TRANA, TRANB, $ TRANQ INTEGER K, LDA, LDB, LDRS, LDT, LDV, LDW, M, N C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*), RS(LDRS,*), $ T(LDT,*), V(LDV,*), W(LDW,*)Arguments
Mode Parameters
STRAB CHARACTER*1 Specifies the structure of the first blocks of A and B: = 'Z': the leading K-by-N submatrices of op(A) and op(B) are (implicitly) assumed to be zero; = 'N'; no structure to mention. TRANA CHARACTER*1 Specifies the form of op( A ) as follows: = 'N': op( A ) = A; = 'T': op( A ) = A'; = 'C': op( A ) = A'. TRANB CHARACTER*1 Specifies the form of op( B ) as follows: = 'N': op( B ) = B; = 'T': op( B ) = B'; = 'C': op( B ) = B'. DIRECT CHARACTER*1 This is a dummy argument, which is reserved for future extensions of this subroutine. Not referenced. TRANQ CHARACTER*1 = 'N': apply Q; = 'T': apply Q'. STOREV CHARACTER*1 Specifies how the vectors which define the concatenated Householder reflectors contained in V are stored: = 'C': columnwise; = 'R': rowwise. STOREW CHARACTER*1 Specifies how the vectors which define the concatenated Householder reflectors contained in W are stored: = 'C': columnwise; = 'R': rowwise.Input/Output Parameters
M (input) INTEGER The number of rows of the matrices op(A) and op(B). M >= 0. N (input) INTEGER The number of columns of the matrices op(A) and op(B). N >= 0. K (input) INTEGER The order of the triangular matrices defining R, S and T. M >= K >= 0. V (input) DOUBLE PRECISION array, dimension (LDV,K) if STOREV = 'C', (LDV,M) if STOREV = 'R' On entry with STOREV = 'C', the leading M-by-K part of this array must contain in its columns the vectors which define the elementary reflector used to form parts of Q. On entry with STOREV = 'R', the leading K-by-M part of this array must contain in its rows the vectors which define the elementary reflector used to form parts of Q. LDV INTEGER The leading dimension of the array V. LDV >= MAX(1,M), if STOREV = 'C'; LDV >= MAX(1,K), if STOREV = 'R'. W (input) DOUBLE PRECISION array, dimension (LDW,K) if STOREW = 'C', (LDW,M) if STOREW = 'R' On entry with STOREW = 'C', the leading M-by-K part of this array must contain in its columns the vectors which define the elementary reflector used to form parts of Q. On entry with STOREW = 'R', the leading K-by-M part of this array must contain in its rows the vectors which define the elementary reflector used to form parts of Q. LDW INTEGER The leading dimension of the array W. LDW >= MAX(1,M), if STOREW = 'C'; LDW >= MAX(1,K), if STOREW = 'R'. RS (input) DOUBLE PRECISION array, dimension (K,6*K) On entry, the leading K-by-6*K part of this array must contain the upper triangular matrices defining the factors R and S of the symplectic block reflector Q. The (strictly) lower portions of this array are not referenced. LDRS INTEGER The leading dimension of the array RS. LDRS >= MAX(1,K). T (input) DOUBLE PRECISION array, dimension (K,9*K) On entry, the leading K-by-9*K part of this array must contain the upper triangular matrices defining the factor T of the symplectic block reflector Q. The (strictly) lower portions of this array are not referenced. LDT INTEGER The leading dimension of the array T. LDT >= MAX(1,K). A (input/output) DOUBLE PRECISION array, dimension (LDA,N) if TRANA = 'N', (LDA,M) if TRANA = 'C' or TRANA = 'T' On entry with TRANA = 'N', the leading M-by-N part of this array must contain the matrix A. On entry with TRANA = 'T' or TRANA = 'C', the leading N-by-M part of this array must contain the matrix A. LDA INTEGER The leading dimension of the array A. LDA >= MAX(1,M), if TRANA = 'N'; LDA >= MAX(1,N), if TRANA = 'C' or TRANA = 'T'. B (input/output) DOUBLE PRECISION array, dimension (LDB,N) if TRANB = 'N', (LDB,M) if TRANB = 'C' or TRANB = 'T' On entry with TRANB = 'N', the leading M-by-N part of this array must contain the matrix B. On entry with TRANB = 'T' or TRANB = 'C', the leading N-by-M part of this array must contain the matrix B. LDB INTEGER The leading dimension of the array B. LDB >= MAX(1,M), if TRANB = 'N'; LDB >= MAX(1,N), if TRANB = 'C' or TRANB = 'T'.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK), where LDWORK >= 8*N*K, if STRAB = 'Z', LDWORK >= 9*N*K, if STRAB = 'N'.References
[1] Kressner, D. Block algorithms for orthogonal symplectic factorizations. BIT, 43 (4), pp. 775-790, 2003.Numerical Aspects
The algorithm requires 16*( M - K )*N + ( 26*K - 4 )*K*N floating point operations if STRAB = 'Z' and additional ( 12*K + 2 )*K*N floating point operations if STRAB = 'N'.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None