Purpose
To reduce a Hamiltonian matrix, [ A G ] H = [ T ] , [ Q -A ] where A is an N-by-N matrix and G,Q are N-by-N symmetric matrices, to Paige/Van Loan (PVL) form. That is, an orthogonal symplectic U is computed so that T [ Aout Gout ] U H U = [ T ] , [ Qout -Aout ] where Aout is upper Hessenberg and Qout is diagonal. Blocked version.Specification
SUBROUTINE MB04PB( N, ILO, A, LDA, QG, LDQG, CS, TAU, DWORK, $ LDWORK, INFO ) C .. Scalar Arguments .. INTEGER ILO, INFO, LDA, LDQG, LDWORK, N C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), CS(*), DWORK(*), QG(LDQG,*), TAU(*)Arguments
Input/Output Parameters
N (input) INTEGER The order of the matrix A. N >= 0. ILO (input) INTEGER It is assumed that A is already upper triangular and Q is zero in rows and columns 1:ILO-1. ILO is normally set by a previous call to MB04DD; otherwise it should be set to 1. 1 <= ILO <= N, if N > 0; ILO = 1, if N = 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the matrix A. On exit, the leading N-by-N part of this array contains the matrix Aout and, in the zero part of Aout, information about the elementary reflectors used to compute the PVL factorization. LDA INTEGER The leading dimension of the array A. LDA >= MAX(1,N). QG (input/output) DOUBLE PRECISION array, dimension (LDQG,N+1) On entry, the leading N-by-N+1 part of this array must contain the lower triangular part of the matrix Q and the upper triangular part of the matrix G. On exit, the leading N-by-N+1 part of this array contains the diagonal of the matrix Qout, the upper triangular part of the matrix Gout and, in the zero parts of Qout, information about the elementary reflectors used to compute the PVL factorization. LDQG INTEGER The leading dimension of the array QG. LDQG >= MAX(1,N). CS (output) DOUBLE PRECISION array, dimension (2N-2) On exit, the first 2N-2 elements of this array contain the cosines and sines of the symplectic Givens rotations used to compute the PVL factorization. TAU (output) DOUBLE PRECISION array, dimension (N-1) On exit, the first N-1 elements of this array contain the scalar factors of some of the elementary reflectors.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK, 8*N*NB + 3*NB, where NB is the optimal block size determined by the function UE01MD. On exit, if INFO = -10, DWORK(1) returns the minimum value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= MAX(1,N-1). If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message related to LDWORK is issued by XERBLA.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
The matrix U is represented as a product of symplectic reflectors and Givens rotations U = diag( H(1),H(1) ) G(1) diag( F(1),F(1) ) diag( H(2),H(2) ) G(2) diag( F(2),F(2) ) .... diag( H(n-1),H(n-1) ) G(n-1) diag( F(n-1),F(n-1) ). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in QG(i+2:n,i), and tau in QG(i+1,i). Each F(i) has the form F(i) = I - nu * w * w' where nu is a real scalar, and w is a real vector with w(1:i) = 0 and w(i+1) = 1; w(i+2:n) is stored on exit in A(i+2:n,i), and nu in TAU(i). Each G(i) is a Givens rotation acting on rows i+1 and n+i+1, where the cosine is stored in CS(2*i-1) and the sine in CS(2*i).Numerical Aspects
The algorithm requires O(N**3) floating point operations and is strongly backward stable.References
[1] C. F. VAN LOAN: A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix. Linear Algebra and its Applications, 61, pp. 233-251, 1984. [2] D. KRESSNER: Block algorithms for orthogonal symplectic factorizations. BIT, 43 (4), pp. 775-790, 2003.Further Comments
NoneExample
Program Text
* MB04PB/MB04WP EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, NBMAX PARAMETER ( NMAX = 7, NBMAX = 3 ) INTEGER LDA, LDQG, LDRES, LDU1, LDU2, LDWORK PARAMETER ( LDA = NMAX, LDQG = NMAX, LDRES = NMAX, $ LDU1 = NMAX, LDU2 = NMAX, $ LDWORK = 8*NBMAX*NMAX + 3*NBMAX ) * .. Local Scalars .. INTEGER I, INFO, J, N * .. Local Arrays .. DOUBLE PRECISION A(LDA, NMAX), CS(2*NMAX), DWORK(LDWORK), $ QG(LDQG, NMAX+1), RES(LDRES,3*NMAX+1), TAU(NMAX), $ U1(LDU1,NMAX), U2(LDU2, NMAX) * .. External Functions .. DOUBLE PRECISION MA02ID, MA02JD EXTERNAL MA02ID, MA02JD * .. External Subroutines .. EXTERNAL DGEMM, DLACPY, DLASET, DSCAL, DSYMM, DSYR, $ DSYR2K, DTRMM, MB04PB, MB04WP * .. Executable Statements .. WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N IF( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99992 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) CALL DLACPY( 'All', N, N, A, LDA, RES(1,N+1), LDRES ) READ ( NIN, FMT = * ) ( ( QG(I,J), J = 1,N+1 ), I = 1,N ) CALL DLACPY( 'All', N, N+1, QG, LDQG, RES(1,2*N+1), LDRES ) CALL MB04PB( N, 1, A, LDA, QG, LDQG, CS, TAU, DWORK, LDWORK, $ INFO ) INFO = 0 IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE CALL DLACPY( 'Lower', N, N, A, LDA, U1, LDU1 ) CALL DLACPY( 'Lower', N, N, QG, LDQG, U2, LDU2 ) CALL MB04WP( N, 1, U1, LDU1, U2, LDU2, CS, TAU, DWORK, $ LDWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99997 ) INFO ELSE IF ( N.GT.2 ) $ CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, A(3,1), $ LDA ) IF ( N.GT.1 ) $ CALL DLASET( 'Lower', N-1, N-1, ZERO, ZERO, QG(2,1), $ LDQG ) WRITE ( NOUT, FMT = 99996 ) DO 10 I = 1, N WRITE (NOUT, FMT = 99993) $ ( U1(I,J), J = 1,N ), ( U2(I,J), J = 1,N ) 10 CONTINUE DO 20 I = 1, N WRITE (NOUT, FMT = 99993) $ ( -U2(I,J), J = 1,N ), ( U1(I,J), J = 1,N ) 20 CONTINUE WRITE ( NOUT, FMT = 99991 ) MA02JD( .FALSE., .FALSE., N, $ U1, LDU1, U2, LDU2, RES, LDRES ) WRITE ( NOUT, FMT = 99995 ) DO 30 I = 1, N WRITE (NOUT, FMT = 99993) ( A(I,J), J = 1,N ) 30 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 40 I = 1, N WRITE (NOUT, FMT = 99993) ( QG(I,J), J = 1,N+1 ) 40 CONTINUE C CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE, $ U1, LDU1, A, LDA, ZERO, RES, LDRES ) CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, -ONE, $ RES, LDRES, U1, LDU1, ONE, RES(1,N+1), $ LDRES ) CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, ONE, $ U2, LDU2, A, LDA, ZERO, RES, LDRES ) CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, ONE, $ RES, LDRES, U2, LDU2, ONE, RES(1,N+1), $ LDRES ) CALL DSYMM ( 'Right', 'Upper', N, N, ONE, QG(1,2), LDQG, $ U1, LDU1, ZERO, RES, LDRES ) CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, -ONE, $ RES, LDRES, U2, LDU2, ONE, RES(1,N+1), $ LDRES ) CALL DLACPY( 'All', N, N, U2, LDU2, RES, LDRES ) DO 50 I = 1, N CALL DSCAL( N, QG(I,I), RES(1,I), 1 ) 50 CONTINUE CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, -ONE, $ RES, LDRES, U1, LDU1, ONE, RES(1,N+1), $ LDRES ) CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE, $ U2, LDU2, A, LDA, ZERO, RES, LDRES ) CALL DSYR2K( 'Lower', 'No Transpose', N, N, ONE, RES, $ LDRES, U1, LDU1, ONE, RES(1,2*N+1), LDRES ) CALL DSCAL( N, ONE/TWO, QG(1,2), LDQG+1 ) CALL DLACPY( 'Full', N, N, U2, LDU2, RES, LDRES ) CALL DTRMM( 'Right', 'Upper' , 'No Transpose', $ 'Not unit', N, N, ONE, QG(1,2), LDQG, $ RES, LDRES ) CALL DSYR2K( 'Lower', 'No Transpose', N, N, ONE, RES, $ LDRES, U2, LDU2, ONE, RES(1,2*N+1), LDRES ) DO 60 I = 1, N CALL DSYR( 'Lower', N, -QG(I,I), U1(1,I), 1, $ RES(1,2*N+1), LDRES ) 60 CONTINUE CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE, $ U1, LDU1, A, LDA, ZERO, RES, LDRES ) CALL DSYR2K( 'Upper', 'No Transpose', N, N, ONE, RES, $ LDRES, U2, LDU2, ONE, RES(1,2*N+2), LDRES ) CALL DLACPY( 'Full', N, N, U1, LDU1, RES, LDRES ) CALL DTRMM( 'Right', 'Upper' , 'No Transpose', $ 'Not unit', N, N, ONE, QG(1,2), LDQG, $ RES, LDRES ) CALL DSYR2K( 'Upper', 'No Transpose', N, N, -ONE, RES, $ LDRES, U1, LDU1, ONE, RES(1,2*N+2), LDRES ) DO 70 I = 1, N CALL DSYR( 'Upper', N, QG(I,I), U2(1,I), 1, $ RES(1,2*N+2), LDRES ) 70 CONTINUE C WRITE ( NOUT, FMT = 99990 ) MA02ID( 'Hamiltonian', $ 'Frobenius', N, RES(1,N+1), LDRES, RES(1,2*N+1), $ LDRES, DWORK ) END IF END IF END IF * 99999 FORMAT (' TMB04PB EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB04PB = ',I2) 99997 FORMAT (' INFO on exit from MB04WP = ',I2) 99996 FORMAT (' The symplectic orthogonal factor U is ') 99995 FORMAT (/' The reduced matrix A is ') 99994 FORMAT (/' The reduced matrix QG is ') 99993 FORMAT (20(1X,F9.4)) 99992 FORMAT (/' N is out of range.',/' N = ',I5) 99991 FORMAT (/' Orthogonality of U: || U''*U - I ||_F = ',G7.2) 99990 FORMAT (/' Residual: || H - U*R*U'' ||_F = ',G7.2) ENDProgram Data
MB04PB EXAMPLE PROGRAM DATA 5 0.9501 0.7621 0.6154 0.4057 0.0579 0.2311 0.4565 0.7919 0.9355 0.3529 0.6068 0.0185 0.9218 0.9169 0.8132 0.4860 0.8214 0.7382 0.4103 0.0099 0.8913 0.4447 0.1763 0.8936 0.1389 0.3869 0.4055 0.2140 1.0224 1.1103 0.7016 1.3801 0.7567 1.4936 1.2913 0.9515 1.1755 0.7993 1.7598 1.6433 1.0503 0.8839 1.1010 1.2019 1.1956 0.9346 0.6824 0.7590 1.1364 0.8780 0.9029 1.6565 1.1022 0.7408 0.3793Program Results
TMB04PB EXAMPLE PROGRAM RESULTS The symplectic orthogonal factor U is 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0927 0.2098 0.5594 -0.0226 0.0000 0.5538 0.3184 0.2519 -0.4031 0.0000 -0.2435 0.4745 -0.6362 -0.2542 0.0000 0.3207 -0.2455 0.0595 -0.2819 0.0000 -0.1950 -0.1770 -0.1519 -0.2857 0.0000 0.4823 0.4122 -0.2060 0.6173 0.0000 -0.3576 -0.0480 0.2302 0.4512 0.0000 0.3523 -0.6047 -0.3110 0.1635 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.5538 -0.3184 -0.2519 0.4031 0.0000 -0.0927 0.2098 0.5594 -0.0226 0.0000 -0.3207 0.2455 -0.0595 0.2819 0.0000 -0.2435 0.4745 -0.6362 -0.2542 0.0000 -0.4823 -0.4122 0.2060 -0.6173 0.0000 -0.1950 -0.1770 -0.1519 -0.2857 0.0000 -0.3523 0.6047 0.3110 -0.1635 0.0000 -0.3576 -0.0480 0.2302 0.4512 Orthogonality of U: || U'*U - I ||_F = .77E-15 The reduced matrix A is 0.9501 -1.5494 0.5268 0.3187 -0.6890 -2.4922 2.0907 -1.3598 0.5682 0.5618 0.0000 -1.7723 0.3960 -0.2624 -0.3709 0.0000 0.0000 -0.2648 0.2136 -0.3226 0.0000 0.0000 0.0000 -0.2308 0.2319 The reduced matrix QG is 0.3869 0.4055 0.0992 0.5237 -0.4110 -0.4861 0.0000 -3.7784 -4.1609 0.3614 0.3606 -0.0696 0.0000 0.0000 1.2192 -0.0848 0.2007 0.3735 0.0000 0.0000 0.0000 -0.8646 0.1538 -0.1970 0.0000 0.0000 0.0000 0.0000 -0.4527 0.0743 Residual: || H - U*R*U' ||_F = .33E-14