Purpose
To apply a real elementary reflector H to a real m-by-(n+1) matrix C = [ A B ], from the right, where A has one column. H is represented in the form ( 1 ) H = I - tau * u *u', u = ( ), ( v ) where tau is a real scalar and v is a real n-vector. If tau = 0, then H is taken to be the unit matrix. In-line code is used if H has order < 11.Specification
SUBROUTINE MB04NY( M, N, V, INCV, TAU, A, LDA, B, LDB, DWORK ) C .. Scalar Arguments .. INTEGER INCV, LDA, LDB, M, N DOUBLE PRECISION TAU C .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DWORK( * ), V( * )Arguments
Input/Output Parameters
M (input) INTEGER The number of rows of the matrices A and B. M >= 0. N (input) INTEGER The number of columns of the matrix B. N >= 0. V (input) DOUBLE PRECISION array, dimension (1+(N-1)*ABS( INCV )) The vector v in the representation of H. INCV (input) INTEGER The increment between the elements of v. INCV <> 0. TAU (input) DOUBLE PRECISION The scalar factor of the elementary reflector H. A (input/output) DOUBLE PRECISION array, dimension (LDA,1) On entry, the leading M-by-1 part of this array must contain the matrix A. On exit, the leading M-by-1 part of this array contains the updated matrix A (the first column of C * H). LDA INTEGER The leading dimension of array A. LDA >= MAX(1,M). B (input/output) DOUBLE PRECISION array, dimension (LDB,N) On entry, the leading M-by-N part of this array must contain the matrix B. On exit, the leading M-by-N part of this array contains the updated matrix B (the last n columns of C * H). LDB INTEGER The leading dimension of array B. LDB >= MAX(1,M).Workspace
DWORK DOUBLE PRECISION array, dimension (M) DWORK is not referenced if H has order less than 11.Method
The routine applies the elementary reflector H, taking the special structure of C into account.Numerical Aspects
The algorithm is backward stable.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None