Purpose
To reduce the 1-norm of a general real matrix A by balancing. This involves diagonal similarity transformations applied iteratively to A to make the rows and columns as close in norm as possible. This routine can be used instead LAPACK Library routine DGEBAL, when no reduction of the 1-norm of the matrix is possible with DGEBAL, as for upper triangular matrices. LAPACK Library routine DGEBAK, with parameters ILO = 1, IHI = N, and JOB = 'S', should be used to apply the backward transformation.Specification
SUBROUTINE MB04MD( N, MAXRED, A, LDA, SCALE, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, N DOUBLE PRECISION MAXRED C .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), SCALE( * )Arguments
Input/Output Parameters
N (input) INTEGER The order of the matrix A. N >= 0. MAXRED (input/output) DOUBLE PRECISION On entry, the maximum allowed reduction in the 1-norm of A (in an iteration) if zero rows or columns are encountered. If MAXRED > 0.0, MAXRED must be larger than one (to enable the norm reduction). If MAXRED <= 0.0, then the value 10.0 for MAXRED is used. On exit, if the 1-norm of the given matrix A is non-zero, the ratio between the 1-norm of the given matrix and the 1-norm of the balanced matrix. Usually, this ratio will be larger than one, but it can sometimes be one, or even less than one (for instance, for some companion matrices). A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the input matrix A. On exit, the leading N-by-N part of this array contains the balanced matrix. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). SCALE (output) DOUBLE PRECISION array, dimension (N) The scaling factors applied to A. If D(j) is the scaling factor applied to row and column j, then SCALE(j) = D(j), for j = 1,...,N.Error Indicator
INFO INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.Method
Balancing consists of applying a diagonal similarity transformation inv(D) * A * D to make the 1-norms of each row of A and its corresponding column nearly equal. Information about the diagonal matrix D is returned in the vector SCALE.References
[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. LAPACK Users' Guide: Second Edition. SIAM, Philadelphia, 1995.Numerical Aspects
None.Further Comments
NoneExample
Program Text
* MB04MD EXAMPLE PROGRAM TEXT. * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX PARAMETER ( NMAX = 20 ) INTEGER LDA PARAMETER ( LDA = NMAX ) * .. Local Scalars .. INTEGER I, INFO, J, N DOUBLE PRECISION MAXRED * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), SCALE(NMAX) * .. External Subroutines .. EXTERNAL MB04MD * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, MAXRED IF ( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99993 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) * Balance matrix A. CALL MB04MD( N, MAXRED, A, LDA, SCALE, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N ) 20 CONTINUE WRITE ( NOUT, FMT = 99994 ) ( SCALE(I), I = 1,N ) END IF END IF STOP * 99999 FORMAT (' MB04MD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB04MD = ',I2) 99997 FORMAT (' The balanced matrix is ') 99996 FORMAT (20(1X,F10.4)) 99994 FORMAT (/' SCALE is ',/20(1X,F10.4)) 99993 FORMAT (/' N is out of range.',/' N = ',I5) ENDProgram Data
MB04MD EXAMPLE PROGRAM DATA 4 0.0 1.0 0.0 0.0 0.0 300.0 400.0 500.0 600.0 1.0 2.0 0.0 0.0 1.0 1.0 1.0 1.0Program Results
MB04MD EXAMPLE PROGRAM RESULTS The balanced matrix is 1.0000 0.0000 0.0000 0.0000 30.0000 400.0000 50.0000 60.0000 1.0000 20.0000 0.0000 0.0000 1.0000 10.0000 1.0000 1.0000 SCALE is 1.0000 10.0000 1.0000 1.0000