Purpose
To compute the eigenvalues of a real N-by-N skew-Hamiltonian/ skew-Hamiltonian pencil aS - bT with ( B F ) ( 0 I ) S = J Z' J' Z and T = ( ), where J = ( ). (1) ( G B' ) ( -I 0 ) Optionally, if JOB = 'T', the pencil aS - bT will be transformed to the structured Schur form: an orthogonal transformation matrix Q and an orthogonal symplectic transformation matrix U are computed, such that ( Z11 Z12 ) U' Z Q = ( ) = Zout, and ( 0 Z22 ) (2) ( Bout Fout ) J Q' J' T Q = ( ), ( 0 Bout' ) where Z11 and Z22' are upper triangular and Bout is upper quasi- triangular. The notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'I', the orthogonal transformation matrix Q will be computed. Optionally, if COMPU = 'I' or COMPU = 'U', the orthogonal symplectic transformation matrix ( U1 U2 ) U = ( ) ( -U2 U1 ) will be computed.Specification
SUBROUTINE MB04ED( JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG, LDFG, $ Q, LDQ, U1, LDU1, U2, LDU2, ALPHAR, ALPHAI, $ BETA, IWORK, LIWORK, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER COMPQ, COMPU, JOB INTEGER INFO, LDB, LDFG, LDQ, LDU1, LDU2, LDWORK, LDZ, $ LIWORK, N C .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION ALPHAI( * ), ALPHAR( * ), B( LDB, * ), $ BETA( * ), DWORK( * ), FG( LDFG, * ), $ Q( LDQ, * ), U1( LDU1, * ), U2( LDU2, * ), $ Z( LDZ, * )Arguments
Mode Parameters
JOB CHARACTER*1 Specifies the computation to be performed, as follows: = 'E': compute the eigenvalues only; Z and T will not necessarily be put into the forms in (2); = 'T': put Z and T into the forms in (2), and return the eigenvalues in ALPHAR, ALPHAI and BETA. COMPQ CHARACTER*1 Specifies whether to compute the orthogonal transformation matrix Q as follows: = 'N': Q is not computed; = 'I': the array Q is initialized internally to the unit matrix, and the orthogonal matrix Q is returned. COMPU CHARACTER*1 Specifies whether to compute the orthogonal symplectic transformation matrix U as follows: = 'N': U is not computed; = 'I': the array U is initialized internally to the unit matrix, and the orthogonal matrix U is returned; = 'U': the arrays U1 and U2 contain the corresponding submatrices of an orthogonal symplectic matrix U0 on entry, and the updated submatrices U1 and U2 of the matrix product U0*U are returned, where U is the product of the orthogonal symplectic transformations that are applied to the pencil aS - bT to reduce Z and T to the forms in (2), for COMPU = 'I'.Input/Output Parameters
N (input) INTEGER The order of the pencil aS - bT. N >= 0, even. Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) On entry, the leading N-by-N part of this array must contain the matrix Z. On exit, if JOB = 'T', the leading N-by-N part of this array contains the matrix Zout; otherwise, it contains the matrix Z just before the application of the periodic QZ algorithm. The entries in the rows N/2+1 to N and the first N/2 columns are unchanged. LDZ INTEGER The leading dimension of the array Z. LDZ >= MAX(1, N). B (input/output) DOUBLE PRECISION array, dimension (LDB, N/2) On entry, the leading N/2-by-N/2 part of this array must contain the matrix B. On exit, if JOB = 'T', the leading N/2-by-N/2 part of this array contains the matrix Bout; otherwise, it contains the matrix B just before the application of the periodic QZ algorithm. LDB INTEGER The leading dimension of the array B. LDB >= MAX(1, N/2). FG (input/output) DOUBLE PRECISION array, dimension (LDFG, N/2+1) On entry, the leading N/2-by-N/2 strictly lower triangular part of this array must contain the strictly lower triangular part of the skew-symmetric matrix G, and the N/2-by-N/2 strictly upper triangular part of the submatrix in the columns 2 to N/2+1 of this array must contain the strictly upper triangular part of the skew-symmetric matrix F. On exit, if JOB = 'T', the leading N/2-by-N/2 strictly upper triangular part of the submatrix in the columns 2 to N/2+1 of this array contains the strictly upper triangular part of the skew-symmetric matrix Fout. If JOB = 'E', the leading N/2-by-N/2 strictly upper triangular part of the submatrix in the columns 2 to N/2+1 of this array contains the strictly upper triangular part of the skew-symmetric matrix F just before the application of the QZ algorithm. The entries on the diagonal and the first superdiagonal of this array are not referenced, but are assumed to be zero. Moreover, the diagonal and the first subdiagonal of this array on exit coincide to the corresponding diagonals of this array on entry. LDFG INTEGER The leading dimension of the array FG. LDFG >= MAX(1, N/2). Q (output) DOUBLE PRECISION array, dimension (LDQ, N) On exit, if COMPQ = 'I', the leading N-by-N part of this array contains the orthogonal transformation matrix Q. On exit, if COMPQ = 'N', the leading N-by-N part of this array contains the orthogonal matrix Q1, such that ( Z11 Z12 ) Z*Q1 = ( ), ( 0 Z22 ) where Z11 and Z22' are upper triangular (the first step of the algorithm). LDQ INTEGER The leading dimension of the array Q. LDQ >= MAX(1, N). U1 (input/output) DOUBLE PRECISION array, dimension (LDU1, N/2) On entry, if COMPU = 'U', then the leading N/2-by-N/2 part of this array must contain the upper left block of a given matrix U0, and on exit, the leading N/2-by-N/2 part of this array contains the updated upper left block U1 of the product of the input matrix U0 and the transformation matrix U used to transform the matrices Z and T. On exit, if COMPU = 'I', then the leading N/2-by-N/2 part of this array contains the upper left block U1 of the orthogonal symplectic transformation matrix U. If COMPU = 'N' this array is not referenced. LDU1 INTEGER The leading dimension of the array U1. LDU1 >= 1, if COMPU = 'N'; LDU1 >= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'. U2 (input/output) DOUBLE PRECISION array, dimension (LDU2, N/2) On entry, if COMPU = 'U', then the leading N/2-by-N/2 part of this array must contain the upper right block of a given matrix U0, and on exit, the leading N/2-by-N/2 part of this array contains the updated upper right block U2 of the product of the input matrix U0 and the transformation matrix U used to transform the matrices Z and T. On exit, if COMPU = 'I', then the leading N/2-by-N/2 part of this array contains the upper right block U2 of the orthogonal symplectic transformation matrix U. If COMPU = 'N' this array is not referenced. LDU2 INTEGER The leading dimension of the array U2. LDU2 >= 1, if COMPU = 'N'; LDU2 >= MAX(1, N/2), if COMPU = 'I' or COMPU = 'U'. ALPHAR (output) DOUBLE PRECISION array, dimension (N/2) The real parts of each scalar alpha defining an eigenvalue of the pencil aS - bT. ALPHAI (output) DOUBLE PRECISION array, dimension (N/2) The imaginary parts of each scalar alpha defining an eigenvalue of the pencil aS - bT. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j). BETA (output) DOUBLE PRECISION array, dimension (N/2) The scalars beta that define the eigenvalues of the pencil aS - bT. Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and beta = BETA(j) represent the j-th eigenvalue of the pencil aS - bT, in the form lambda = alpha/beta. Since lambda may overflow, the ratios should not, in general, be computed. Due to the skew-Hamiltonian/skew-Hamiltonian structure of the pencil, every eigenvalue occurs twice and thus it has only to be saved once in ALPHAR, ALPHAI and BETA.Workspace
IWORK INTEGER array, dimension (LIWORK) LIWORK INTEGER The dimension of the array IWORK. LIWORK >= N+9. DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK. On exit, if INFO = -23, DWORK(1) returns the minimum value of LDWORK. LDWORK INTEGER The dimension of the array DWORK. If JOB = 'E' and COMPQ = 'N' and COMPU = 'N', LDWORK >= 3/4*N**2+MAX(N, 24)+3; else, LDWORK >= 3/2*N**2+MAX(N, 24)+3. For good performance LDWORK should generally be larger. If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message related to LDWORK is issued by XERBLA.Error Indicator
INFO INTEGER = 0: succesful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: problem during computation of the eigenvalues; = 2: periodic QZ algorithm did not converge in the SLICOT Library routine MB03BD; = 3: some eigenvalues might be inaccurate. This is a warning.Method
The algorithm uses Givens rotations and Householder reflections to annihilate elements in Z and T such that Z is in a special block triangular form and T is in skew-Hamiltonian Hessenberg form: ( Z11 Z12 ) ( B1 F1 ) Z = ( ), T = ( ), ( 0 Z22 ) ( 0 B1' ) with Z11 and Z22' upper triangular and B1 upper Hessenberg. Subsequently, the periodic QZ algorithm is applied to the pencil aZ22' Z11 - bB1 to determine orthogonal matrices Q1, Q2 and U such that U' Z11 Q1, Q2' Z22' U are upper triangular and Q2' B1 Q1 is upper quasi-triangular. See also page 35 in [1] for more details.References
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H. Numerical Computation of Deflating Subspaces of Embedded Hamiltonian Pencils. Tech. Rep. SFB393/99-15, Technical University Chemnitz, Germany, June 1999.Numerical Aspects
3 The algorithm is numerically backward stable and needs O(N ) real floating point operations.Further Comments
NoneExample
Program Text
* MB04ED EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX PARAMETER ( NMAX = 60 ) INTEGER LDB, LDFG, LDQ, LDU1, LDU2, LDWORK, LDZ, $ LIWORK PARAMETER ( LDB = NMAX/2, LDFG = NMAX/2, $ LDQ = NMAX, LDU1 = NMAX/2, LDU2 = NMAX/2, $ LDWORK = 3*NMAX**2/2 + MAX( NMAX, 24 ) + 3, $ LDZ = NMAX, LIWORK = NMAX + 9 ) * * .. Local Scalars .. CHARACTER COMPQ, COMPU, JOB INTEGER I, INFO, J, N * * .. Local Arrays .. INTEGER IWORK( LIWORK ) DOUBLE PRECISION ALPHAI( NMAX/2 ), ALPHAR( NMAX/2 ), $ B( LDB, NMAX/2 ), BETA( NMAX/2 ), $ DWORK( LDWORK ), FG( LDFG, NMAX/2+1 ), $ Q( LDQ, NMAX ), U1( LDU1, NMAX/2 ), $ U2( LDU2, NMAX/2 ), Z( LDZ, NMAX ) * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * * .. External Subroutines .. EXTERNAL MB04ED * * .. Intrinsic Functions .. INTRINSIC MAX, MOD * * .. Executable statements .. * WRITE( NOUT, FMT = 99999 ) * * Skip first line in data file. * READ( NIN, FMT = * ) READ( NIN, FMT = * ) JOB, COMPQ, COMPU, N READ( NIN, FMT = * ) ( ( Z( I, J ), J = 1, N ), I = 1, N ) READ( NIN, FMT = * ) ( ( B( I, J ), J = 1, N/2 ), I = 1, N/2 ) READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, N/2+1 ), I = 1, N/2 ) IF( LSAME( COMPU, 'U' ) ) THEN READ( NIN, FMT = * ) ( ( U1( I, J ), J = 1, N/2 ), I = 1, N/2 ) READ( NIN, FMT = * ) ( ( U2( I, J ), J = 1, N/2 ), I = 1, N/2 ) END IF IF( N.LT.0 .OR. N.GT.NMAX .OR. MOD( N, 2 ).NE.0 ) THEN WRITE( NOUT, FMT = 99998 ) N ELSE * * Test of MB04ED. * CALL MB04ED( JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG, LDFG, Q, $ LDQ, U1, LDU1, U2, LDU2, ALPHAR, ALPHAI, BETA, $ IWORK, LIWORK, DWORK, LDWORK, INFO ) IF( INFO.NE.0 ) THEN WRITE( NOUT, FMT = 99997 ) INFO ELSE WRITE( NOUT, FMT = 99996 ) DO 10 I = 1, N WRITE( NOUT, FMT = 99995 ) ( Z(I,J), J = 1, N ) 10 CONTINUE WRITE( NOUT, FMT = 99994 ) DO 20 I = 1, N/2 WRITE( NOUT, FMT = 99995 ) ( B(I,J), J = 1, N/2 ) 20 CONTINUE WRITE( NOUT, FMT = 99993 ) DO 30 I = 1, N/2 WRITE( NOUT, FMT = 99995 ) ( FG(I,J), J = 1, N/2+1 ) 30 CONTINUE WRITE( NOUT, FMT = 99992 ) WRITE( NOUT, FMT = 99995 ) ( ALPHAR(I), I = 1, N/2 ) WRITE( NOUT, FMT = 99995 ) ( ALPHAI(I), I = 1, N/2 ) WRITE( NOUT, FMT = 99995 ) ( BETA(I), I = 1, N/2 ) WRITE( NOUT, FMT = 99991 ) DO 40 I = 1, N WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, N ) 40 CONTINUE IF ( .NOT.LSAME( COMPU, 'N' ) ) THEN WRITE( NOUT, FMT = 99990 ) DO 50 I = 1, N/2 WRITE( NOUT, FMT = 99995 ) ( U1( I, J ), J = 1, N/2 ) 50 CONTINUE WRITE( NOUT, FMT = 99989 ) DO 60 I = 1, N/2 WRITE( NOUT, FMT = 99995 ) ( U2( I, J ), J = 1, N/2 ) 60 CONTINUE END IF END IF END IF STOP 99999 FORMAT ( 'MB04ED EXAMPLE PROGRAM RESULTS', 1X ) 99998 FORMAT ( 'N is out of range.', /, 'N = ', I5 ) 99997 FORMAT ( 'INFO on exit from MB04ED = ', I2 ) 99996 FORMAT (/' The transformed matrix Z is' ) 99995 FORMAT ( 60( 1X, F8.4 ) ) 99994 FORMAT (/' The transformed matrix B is' ) 99993 FORMAT (/' The transformed matrix FG is' ) 99992 FORMAT (/' The real, imaginary, and beta parts of eigenvalues are' $ ) 99991 FORMAT (/' The matrix Q is ' ) 99990 FORMAT (/' The upper left block of the matrix U is ' ) 99989 FORMAT (/' The upper right block of the matrix U is ' ) ENDProgram Data
MB04ED EXAMPLE PROGRAM DATA T I I 8 0.0949 3.3613 -4.7663 -0.5534 0.6408 -3.2793 3.4253 2.9654 0.1138 -1.5903 2.1837 -4.1648 -4.3775 -1.7454 0.1744 2.3262 2.7505 4.4048 4.4183 3.0478 2.7728 2.3048 -0.6451 -1.2045 3.6091 -4.1716 3.4461 3.6880 -0.0985 3.8458 0.2528 -1.3859 0.4352 -3.2829 3.7246 0.4794 -0.3690 -1.5562 -3.4817 -2.2902 1.3080 -3.9881 -3.5497 3.5020 2.2582 4.4764 -4.4080 -1.6818 1.1308 -1.5087 2.4730 2.1553 -1.7129 -4.8669 -2.4102 4.2274 4.7933 -4.3671 -0.0473 -2.0092 1.2439 -4.7385 3.4242 -0.2764 2.0936 1.5510 4.5974 2.5127 2.5469 -3.3739 -1.5961 -2.4490 -2.2397 -3.8100 0.8527 0.0596 1.7970 -0.0164 -2.7619 1.9908 1.0000 2.0000 -4.0500 1.3353 0.2899 -0.4318 2.0000 2.0000 -2.9860 -0.0160 1.0241 0.9469 2.0000 2.0000 1.3303 0.0946 -0.1272 -4.4003 2.0000 2.0000Program Results
MB04ED EXAMPLE PROGRAM RESULTS The transformed matrix Z is -2.5678 -2.9888 0.4304 -2.8719 2.7331 1.3072 1.7565 2.8246 0.0000 -3.8520 -6.0992 6.2935 -3.0386 -5.5317 -1.2189 3.9973 0.0000 0.0000 4.4560 4.4602 0.6080 -4.4326 3.7959 -0.6297 0.0000 0.0000 0.0000 7.0155 1.5557 2.1441 3.6649 -2.3864 0.4352 -3.2829 3.7246 0.4794 -5.3205 0.0000 0.0000 0.0000 1.3080 -3.9881 -3.5497 3.5020 2.2466 6.9633 0.0000 0.0000 1.1308 -1.5087 2.4730 2.1553 -1.7204 -0.8164 8.1468 0.0000 4.7933 -4.3671 -0.0473 -2.0092 -3.9547 0.2664 1.0382 5.5977 The transformed matrix B is 3.8629 -1.3266 0.1253 2.1882 0.0000 3.7258 -3.5913 -2.4583 0.0000 -3.6551 -2.5063 -0.8378 0.0000 0.0000 0.0000 -6.7384 The transformed matrix FG is 1.0000 2.0000 -0.7448 -1.2359 -1.3653 0.0158 2.0000 2.0000 3.4030 3.2344 -1.1665 2.5791 2.0000 2.0000 -0.4096 3.3823 -1.2344 3.9016 2.0000 2.0000 The real, imaginary, and beta parts of eigenvalues are 1.1310 -0.0697 -0.0697 -0.6864 0.0000 0.6035 -0.6035 0.0000 4.0000 4.0000 4.0000 4.0000 The matrix Q is -0.6042 -0.4139 -0.4742 0.1400 -0.2947 0.3462 -0.0980 0.0534 -0.3706 0.1367 0.4442 -0.1381 -0.1210 0.2913 0.7248 -0.0524 0.1325 -0.2735 -0.0515 -0.5084 -0.3163 -0.2855 0.1638 0.6619 0.2373 0.5514 -0.4988 0.3373 -0.3852 -0.0007 0.3329 0.1339 0.4777 -0.4517 0.2739 0.5172 -0.0775 0.3874 0.1088 0.2395 -0.0116 -0.4372 -0.1843 0.2474 0.1236 -0.6052 0.4772 -0.3228 0.1237 -0.0310 -0.4300 -0.2090 0.7209 0.3408 0.2898 0.1883 0.4245 -0.1871 -0.1803 -0.4655 -0.3304 0.2849 0.0623 -0.5843 The upper left block of the matrix U is 0.0154 -0.5058 -0.5272 0.6826 0.4829 -0.1519 -0.2921 -0.3491 0.4981 0.1532 0.1019 0.1810 -0.0188 0.6270 -0.5260 0.0587 The upper right block of the matrix U is 0.0000 0.0000 0.0000 0.0000 0.3179 -0.4312 -0.1802 -0.4659 0.5644 0.0873 0.4480 0.3979 -0.3137 -0.3330 0.3413 0.0239