Purpose
To apply the inverse of a balancing transformation, computed by the SLICOT Library routines MB04DD or MB04DS, to a 2*N-by-M matrix [ V1 ] [ ], [ sgn*V2 ] where sgn is either +1 or -1.Specification
SUBROUTINE MB04DI( JOB, SGN, N, ILO, SCALE, M, V1, LDV1, V2, LDV2, $ INFO ) C .. Scalar Arguments .. CHARACTER JOB, SGN INTEGER ILO, INFO, LDV1, LDV2, M, N C .. Array Arguments .. DOUBLE PRECISION SCALE(*), V1(LDV1,*), V2(LDV2,*)Arguments
Mode Parameters
JOB CHARACTER*1 Specifies the type of inverse transformation required: = 'N': do nothing, return immediately; = 'P': do inverse transformation for permutation only; = 'S': do inverse transformation for scaling only; = 'B': do inverse transformations for both permutation and scaling. JOB must be the same as the argument JOB supplied to MB04DD or MB04DS. SGN CHARACTER*1 Specifies the sign to use for V2: = 'P': sgn = +1; = 'N': sgn = -1.Input/Output Parameters
N (input) INTEGER The number of rows of the matrices V1 and V2. N >= 0. ILO (input) INTEGER The integer ILO determined by MB04DD or MB04DS. 1 <= ILO <= N+1. SCALE (input) DOUBLE PRECISION array, dimension (N) Details of the permutation and scaling factors, as returned by MB04DD or MB04DS. M (input) INTEGER The number of columns of the matrices V1 and V2. M >= 0. V1 (input/output) DOUBLE PRECISION array, dimension (LDV1,M) On entry, the leading N-by-M part of this array must contain the matrix V1. On exit, the leading N-by-M part of this array is overwritten by the updated matrix V1 of the transformed matrix. LDV1 INTEGER The leading dimension of the array V1. LDV1 >= max(1,N). V2 (input/output) DOUBLE PRECISION array, dimension (LDV2,M) On entry, the leading N-by-M part of this array must contain the matrix V2. On exit, the leading N-by-M part of this array is overwritten by the updated matrix V2 of the transformed matrix. LDV2 INTEGER The leading dimension of the array V2. LDV2 >= max(1,N).Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.References
[1] Benner, P. Symplectic balancing of Hamiltonian matrices. SIAM J. Sci. Comput., 22 (5), pp. 1885-1904, 2001.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None