Purpose
To compute the eigenvalues of a Hamiltonian matrix, [ A G ] T T H = [ T ], G = G, Q = Q, (1) [ Q -A ] where A, G and Q are real n-by-n matrices. Due to the structure of H all eigenvalues appear in pairs (lambda,-lambda). This routine computes the eigenvalues of H using an algorithm based on the symplectic URV and the periodic Schur decompositions as described in [1], T [ T G ] U H V = [ T ], (2) [ 0 S ] where U and V are 2n-by-2n orthogonal symplectic matrices, S is in real Schur form and T is upper triangular. The algorithm is backward stable and preserves the eigenvalue pairings in finite precision arithmetic. Optionally, a symplectic balancing transformation to improve the conditioning of eigenvalues is computed (see MB04DD). In this case, the matrix H in decomposition (2) must be replaced by the balanced matrix. The SLICOT Library routine MB03ZD can be used to compute invariant subspaces of H from the output of this routine.Specification
SUBROUTINE MB03XD( BALANC, JOB, JOBU, JOBV, N, A, LDA, QG, LDQG, $ T, LDT, U1, LDU1, U2, LDU2, V1, LDV1, V2, LDV2, $ WR, WI, ILO, SCALE, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER BALANC, JOB, JOBU, JOBV INTEGER ILO, INFO, LDA, LDQG, LDT, LDU1, LDU2, LDV1, $ LDV2, LDWORK, N C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), DWORK(*), QG(LDQG,*), SCALE(*), $ T(LDT,*), U1(LDU1,*), U2(LDU2,*), V1(LDV1,*), $ V2(LDV2,*), WI(*), WR(*)Arguments
Mode Parameters
BALANC CHARACTER*1 Indicates how H should be diagonally scaled and/or permuted to reduce its norm. = 'N': Do not diagonally scale or permute; = 'P': Perform symplectic permutations to make the matrix closer to Hamiltonian Schur form. Do not diagonally scale; = 'S': Diagonally scale the matrix, i.e., replace A, G and Q by D*A*D**(-1), D*G*D and D**(-1)*Q*D**(-1) where D is a diagonal matrix chosen to make the rows and columns of H more equal in norm. Do not permute; = 'B': Both diagonally scale and permute A, G and Q. Permuting does not change the norm of H, but scaling does. JOB CHARACTER*1 Indicates whether the user wishes to compute the full decomposition (2) or the eigenvalues only, as follows: = 'E': compute the eigenvalues only; = 'S': compute matrices T and S of (2); = 'G': compute matrices T, S and G of (2). JOBU CHARACTER*1 Indicates whether or not the user wishes to compute the orthogonal symplectic matrix U of (2) as follows: = 'N': the matrix U is not computed; = 'U': the matrix U is computed. JOBV CHARACTER*1 Indicates whether or not the user wishes to compute the orthogonal symplectic matrix V of (2) as follows: = 'N': the matrix V is not computed; = 'V': the matrix V is computed.Input/Output Parameters
N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the matrix A. On exit, this array is overwritten. If JOB = 'S' or JOB = 'G', the leading N-by-N part of this array contains the matrix S in real Schur form of decomposition (2). LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). QG (input/output) DOUBLE PRECISION array, dimension (LDQG,N+1) On entry, the leading N-by-N+1 part of this array must contain in columns 1:N the lower triangular part of the matrix Q and in columns 2:N+1 the upper triangular part of the matrix G. On exit, this array is overwritten. If JOB = 'G', the leading N-by-N+1 part of this array contains in columns 2:N+1 the matrix G of decomposition (2). LDQG INTEGER The leading dimension of the array QG. LDQG >= max(1,N). T (output) DOUBLE PRECISION array, dimension (LDT,N) On exit, if JOB = 'S' or JOB = 'G', the leading N-by-N part of this array contains the upper triangular matrix T of the decomposition (2). Otherwise, this array is used as workspace. LDT INTEGER The leading dimension of the array T. LDT >= MAX(1,N). U1 (output) DOUBLE PRECISION array, dimension (LDU1,N) On exit, if JOBU = 'U', the leading N-by-N part of this array contains the (1,1) block of the orthogonal symplectic matrix U of decomposition (2). LDU1 INTEGER The leading dimension of the array U1. LDU1 >= 1. LDU1 >= N, if JOBU = 'U'. U2 (output) DOUBLE PRECISION array, dimension (LDU2,N) On exit, if JOBU = 'U', the leading N-by-N part of this array contains the (2,1) block of the orthogonal symplectic matrix U of decomposition (2). LDU2 INTEGER The leading dimension of the array U2. LDU2 >= 1. LDU2 >= N, if JOBU = 'U'. V1 (output) DOUBLE PRECISION array, dimension (LDV1,N) On exit, if JOBV = 'V', the leading N-by-N part of this array contains the (1,1) block of the orthogonal symplectic matrix V of decomposition (2). LDV1 INTEGER The leading dimension of the array V1. LDV1 >= 1. LDV1 >= N, if JOBV = 'V'. V2 (output) DOUBLE PRECISION array, dimension (LDV2,N) On exit, if JOBV = 'V', the leading N-by-N part of this array contains the (2,1) block of the orthogonal symplectic matrix V of decomposition (2). LDV2 INTEGER The leading dimension of the array V2. LDV2 >= 1. LDV2 >= N, if JOBV = 'V'. WR (output) DOUBLE PRECISION array, dimension (N) WI (output) DOUBLE PRECISION array, dimension (N) On exit, the leading N elements of WR and WI contain the real and imaginary parts, respectively, of N eigenvalues that have nonnegative imaginary part. Their complex conjugate eigenvalues are not stored. If imaginary parts are zero (i.e., for real eigenvalues), only positive eigenvalues are stored. ILO (output) INTEGER ILO is an integer value determined when H was balanced. The balanced A(i,j) = 0 if I > J and J = 1,...,ILO-1. The balanced Q(i,j) = 0 if J = 1,...,ILO-1 or I = 1,...,ILO-1. SCALE (output) DOUBLE PRECISION array, dimension (N) On exit, if BALANC <> 'N', the leading N elements of this array contain details of the permutation and/or scaling factors applied when balancing H, see MB04DD. This array is not referenced if BALANC = 'N'.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK, and DWORK(2) returns the 1-norm of the scaled (if BALANC = 'S' or 'B') Hamiltonian matrix. On exit, if INFO = -25, DWORK(1) returns the minimum value of LDWORK. LDWORK (input) INTEGER The dimension of the array DWORK. LDWORK >= max( 2, 8*N ). Moreover: If JOB = 'E' or 'S' and JOBU = 'N' and JOBV = 'N', LDWORK >= 7*N+N*N. If JOB = 'G' and JOBU = 'N' and JOBV = 'N', LDWORK >= max( 7*N+N*N, 2*N+3*N*N ). If JOB = 'G' and JOBU = 'U' and JOBV = 'N', LDWORK >= 7*N+2*N*N. If JOB = 'G' and JOBU = 'N' and JOBV = 'V', LDWORK >= 7*N+2*N*N. If JOB = 'G' and JOBU = 'U' and JOBV = 'V', LDWORK >= 7*N+N*N. For good performance, LDWORK must generally be larger. If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message related to LDWORK is issued by XERBLA.Error Indicator
INFO (output) INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; > 0: if INFO = i, the periodic QR algorithm failed to compute all the eigenvalues, elements i+1:N of WR and WI contain eigenvalues which have converged.References
[1] Benner, P., Mehrmann, V., and Xu, H. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math., Vol. 78(3), pp. 329-358, 1998. [2] Benner, P., Mehrmann, V., and Xu, H. A new method for computing the stable invariant subspace of a real Hamiltonian matrix, J. Comput. Appl. Math., vol. 86, pp. 17-43, 1997.Further Comments
NoneExample
Program Text
* MB03XD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX PARAMETER ( NMAX = 100 ) INTEGER LDA, LDQG, LDRES, LDT, LDU1, LDU2, LDV1, LDV2, $ LDWORK PARAMETER ( LDA = NMAX, LDQG = NMAX, LDRES = NMAX, $ LDT = NMAX, LDU1 = NMAX, LDU2 = NMAX, $ LDV1 = NMAX, LDV2 = NMAX, $ LDWORK = 3*NMAX*NMAX + 7*NMAX ) * .. Local Scalars .. CHARACTER*1 BALANC, JOB, JOBU, JOBV INTEGER I, ILO, INFO, J, N DOUBLE PRECISION TEMP * .. Local Arrays .. DOUBLE PRECISION A(LDA, NMAX), DWORK(LDWORK), QG(LDQG, NMAX+1), $ RES(LDRES,3*NMAX+1), SCALE(NMAX), T(LDT,NMAX), $ U1(LDU1,NMAX), U2(LDU2, NMAX), V1(LDV1,NMAX), $ V2(LDV2, NMAX), WI(NMAX), WR(NMAX) * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLANGE, DLAPY2, MA02JD EXTERNAL DLANGE, DLAPY2, LSAME, MA02JD * .. External Subroutines .. EXTERNAL DGEMM, DLACPY, MB03XD, MB04DD * .. Executable Statements .. WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, BALANC, JOB, JOBU, JOBV IF ( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99988 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) CALL DLACPY( 'All', N, N, A, LDA, RES(1,N+1), LDRES ) READ ( NIN, FMT = * ) ( ( QG(I,J), J = 1,N+1 ), I = 1,N ) CALL DLACPY( 'All', N, N+1, QG, LDQG, RES(1,2*N+1), LDRES ) INFO = 0 CALL MB03XD( BALANC, JOB, JOBU, JOBV, N, A, LDA, QG, LDQG, $ T, LDT, U1, LDU1, U2, LDU2, V1, LDV1, V2, LDV2, $ WR, WI, ILO, SCALE, DWORK, LDWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99996 ) I, WR(I), WI(I) 20 CONTINUE IF ( LSAME( JOB, 'S' ).OR.LSAME( JOB, 'G' ) ) THEN WRITE ( NOUT, FMT = 99995 ) DO 30 I = 1, N WRITE ( NOUT, FMT = 99990 ) ( A(I,J), J = 1,N ) 30 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 40 I = 1, N WRITE ( NOUT, FMT = 99990 ) ( T(I,J), J = 1,N ) 40 CONTINUE END IF IF ( LSAME( JOB, 'G' ) ) THEN WRITE ( NOUT, FMT = 99993 ) DO 50 I = 1, N WRITE ( NOUT, FMT = 99990 ) ( QG(I,J+1), J = 1,N ) 50 CONTINUE END IF C IF ( LSAME( JOB, 'G' ).AND.LSAME( JOBU, 'U' ).AND. $ LSAME( JOBV, 'V' ) ) THEN CALL MB04DD( BALANC, N, RES(1,N+1), LDRES, RES(1,2*N+1), $ LDRES, I, DWORK, INFO ) CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE, $ RES(1,N+1), LDRES, V1, LDV1, ZERO, RES, $ LDRES ) CALL DSYMM ( 'Left', 'Upper', N, N, -ONE, RES(1,2*N+2), $ LDRES, V2, LDV2, ONE, RES, LDRES ) CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, $ -ONE, U1, LDU1, T, LDT, ONE, RES, LDRES ) TEMP = DLANGE( 'Frobenius', N, N, RES, LDRES, DWORK ) CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE, $ RES(1,N+1), LDRES, V2, LDV2, ZERO, RES, $ LDRES ) CALL DSYMM( 'Left', 'Upper', N, N, ONE, RES(1,2*N+2), $ LDRES, V1, LDV1, ONE, RES, LDRES ) CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, $ -ONE, U1, LDU1, QG(1,2), LDQG, ONE, RES, $ LDRES ) CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, $ -ONE, U2, LDU2, A, LDA, ONE, RES, LDRES ) TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES, $ LDRES, DWORK ) ) CALL DSYMM( 'Left', 'Lower', N, N, ONE, RES(1,2*N+1), $ LDRES, V1, LDV1, ZERO, RES, LDRES ) CALL DGEMM( 'Transpose', 'No Transpose', N, N, N, ONE, $ RES(1,N+1), LDRES, V2, LDV2, ONE, RES, $ LDRES ) CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE, $ U2, LDU2, T, LDT, ONE, RES, LDRES ) TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES, $ LDRES, DWORK ) ) CALL DSYMM( 'Left', 'Lower', N, N, ONE, RES(1,2*N+1), $ LDRES, V2, LDV2, ZERO, RES, LDRES ) CALL DGEMM( 'Transpose', 'No Transpose', N, N, N, -ONE, $ RES(1,N+1), LDRES, V1, LDV1, ONE, RES, $ LDRES ) CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE, $ U2, LDU2, QG(1,2), LDQG, ONE, RES, LDRES ) CALL DGEMM( 'No Transpose', 'Transpose', N, N, N, $ -ONE, U1, LDU1, A, LDA, ONE, RES, LDRES ) TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES, $ LDRES, DWORK ) ) WRITE ( NOUT, FMT = 99987 ) TEMP END IF C IF ( LSAME( JOBU, 'U' ) ) THEN WRITE ( NOUT, FMT = 99992 ) DO 60 I = 1, N WRITE ( NOUT, FMT = 99990 ) $ ( U1(I,J), J = 1,N ), ( U2(I,J), J = 1,N ) 60 CONTINUE DO 70 I = 1, N WRITE ( NOUT, FMT = 99990 ) $ ( -U2(I,J), J = 1,N ), ( U1(I,J), J = 1,N ) 70 CONTINUE WRITE ( NOUT, FMT = 99986 ) MA02JD( .FALSE., .FALSE., N, $ U1, LDU1, U2, LDU2, RES, LDRES ) END IF IF ( LSAME( JOBV, 'V' ) ) THEN WRITE ( NOUT, FMT = 99991 ) DO 80 I = 1, N WRITE ( NOUT, FMT = 99990 ) $ ( V1(I,J), J = 1,N ), ( V2(I,J), J = 1,N ) 80 CONTINUE DO 90 I = 1, N WRITE ( NOUT, FMT = 99990 ) $ ( -V2(I,J), J = 1,N ), ( V1(I,J), J = 1,N ) 90 CONTINUE WRITE ( NOUT, FMT = 99985 ) MA02JD( .FALSE., .FALSE., N, $ V1, LDV1, V2, LDV2, RES, LDRES ) END IF IF ( LSAME( BALANC, 'S' ).OR.LSAME( BALANC, 'B' ) ) THEN WRITE ( NOUT, FMT = 99989 ) DO 100 I = 1, N WRITE ( NOUT, FMT = 99996 ) I, SCALE(I) 100 CONTINUE END IF END IF END IF * 99999 FORMAT (' MB03XD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB03XD = ',I2) 99997 FORMAT (' The eigenvalues are',//' i',6X, $ 'WR(i)',6X,'WI(i)',/) 99996 FORMAT (I4,3X,F8.4,3X,F8.4) 99995 FORMAT (/' The matrix S of the reduced matrix is') 99994 FORMAT (/' The matrix T of the reduced matrix is') 99993 FORMAT (/' The matrix G of the reduced matrix is') 99992 FORMAT (/' The orthogonal symplectic factor U is') 99991 FORMAT (/' The orthogonal symplectic factor V is') 99990 FORMAT (20(1X,F19.16)) 99989 FORMAT (/' The diagonal scaling factors are ',//' i',6X, $ 'SCALE(i)',/) 99988 FORMAT (/' N is out of range.',/' N = ',I5) 99987 FORMAT (/' Residual: || H*V - U*R ||_F = ',G7.2) 99986 FORMAT (/' Orthogonality of U: || U^T U - I ||_F = ',G7.2) 99985 FORMAT (/' Orthogonality of V: || V^T V - I ||_F = ',G7.2) ENDProgram Data
MB03XD EXAMPLE PROGRAM DATA 5 N G U V 3.7588548168313685e-001 9.1995720669587144e-001 1.9389317998466821e-001 5.4878212553858818e-001 6.2731478808399666e-001 9.8764628987858052e-003 8.4472150190817474e-001 9.0481233416635698e-001 9.3158335257969060e-001 6.9908013774533750e-001 4.1985780631021896e-001 3.6775288246828447e-001 5.6920574967174709e-001 3.3519743020639464e-001 3.9718395379261456e-001 7.5366962581358721e-001 6.2080133182114383e-001 6.3178992922175603e-001 6.5553105501201447e-001 4.1362889533818031e-001 7.9387177473231862e-001 7.3127726446634478e-001 2.3441295540825388e-001 3.9190420688900335e-001 6.5521294635567051e-001 1.8015558545989005e-001 4.1879254941592853e-001 2.7203760737317784e-001 2.8147214090719214e-001 1.7731904815580199e-001 3.4718672159409536e-001 2.7989257702981651e-001 3.5042861661866559e-001 2.5565572408444881e-001 4.3977750345993827e-001 2.8855026075967616e-001 2.1496327083014577e-001 1.7341073886969158e-001 3.9913855375815932e-001 4.0151317011596516e-001 4.0331887464437133e-001 2.6723538667317948e-001 3.7110275606849241e-001 3.7832182695699140e-001 3.3812641389556752e-001 8.4360396433341395e-002 4.3672540277019672e-001 7.0022228267365608e-002 3.8210230186291916e-001 1.9548216143135175e-001 2.9055490787446736e-001 4.7670819669167425e-001 1.4636498713707141e-001 2.7670398401519275e-001 2.9431082727794898e-002Program Results
MB03XD EXAMPLE PROGRAM RESULTS The eigenvalues are i WR(i) WI(i) 1 3.1941 0.0000 2 0.1350 0.3179 3 -0.1350 0.3179 4 0.0595 0.2793 5 -0.0595 0.2793 The matrix S of the reduced matrix is -3.1844761777714723 0.1612357243439330 -0.0628592203751083 0.2449004200921966 0.1974400149992633 0.0000000000000000 -0.1510667773167795 0.4260444411622876 -0.1775026035208666 0.3447278421198404 0.0000000000000000 -0.1386140422054281 -0.3006779624777419 0.2944143257134117 0.3456440339120381 0.0000000000000000 0.0000000000000000 0.0000000000000000 -0.2710128384740589 0.0933189808067083 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.4844146572359630 0.2004347508746724 The matrix T of the reduced matrix is 3.2038208121776366 0.1805955192510636 0.2466389119377562 -0.2539149302433404 -0.0359238844381174 0.0000000000000000 -0.7196686433290822 0.0000000000000000 0.2428659121580382 -0.0594190100670709 0.0000000000000000 0.0000000000000000 -0.1891741194498124 -0.3309578443491325 -0.0303520731950498 0.0000000000000000 0.0000000000000000 0.0000000000000000 -0.4361574461961496 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.1530894573304220 The matrix G of the reduced matrix is -0.0370982242678458 0.0917788436945730 -0.0560402416315236 0.1345152517579191 0.0256668227276665 0.0652183678916926 -0.0700457231988328 0.0350041175858816 -0.2233868768749277 -0.1171980260782820 -0.0626428681377074 0.2327575351902838 -0.1251515732208133 -0.0177816046663209 0.3696921118421109 0.0746042309265569 -0.0828007611045243 0.0217427473546003 -0.1157775118548850 -0.3161183681200607 0.1374372236164838 0.1002727885506978 0.4021556774753987 -0.0431072263235625 0.1067394572547804 Residual: || H*V - U*R ||_F = .38E-14 The orthogonal symplectic factor U is 0.3806883009357249 -0.0347810363019666 -0.5014665065895627 0.5389691288472425 0.2685446895251499 -0.1795922007470744 0.1908329820840935 0.0868799433942041 0.3114741142062469 -0.2579907627915116 0.4642712665555327 -0.5942766860716397 0.4781179763952658 0.2334370556238072 0.0166790369048881 -0.2447897730222852 -0.1028403314750053 -0.1157840914576285 -0.1873268885694422 0.1700708002861556 0.2772789197782788 -0.0130145392695854 -0.2123817030594153 -0.2550292626960007 -0.5049268366774478 -0.2243335325285329 0.3180998613802498 0.3315380214794935 0.1977859924739816 0.5072476567310036 0.4209268575081797 0.1499593172661210 -0.1925590746592206 -0.5472292877802408 0.4543329704184014 -0.2128397588651423 -0.2740560593051884 0.1941418870268831 -0.3096684962457407 -0.0581576193198820 0.3969669479129447 0.6321903535930841 0.3329156356041941 0.0163533225344391 -0.2638879466190056 -0.2002027567371933 -0.0040094115506845 -0.3979373387545256 0.1520881534833996 -0.2010804514091296 0.1795922007470744 -0.1908329820840935 -0.0868799433942041 -0.3114741142062469 0.2579907627915116 0.3806883009357249 -0.0347810363019666 -0.5014665065895627 0.5389691288472425 0.2685446895251499 0.2447897730222852 0.1028403314750053 0.1157840914576285 0.1873268885694422 -0.1700708002861556 0.4642712665555327 -0.5942766860716397 0.4781179763952658 0.2334370556238072 0.0166790369048881 0.2243335325285329 -0.3180998613802498 -0.3315380214794935 -0.1977859924739816 -0.5072476567310036 0.2772789197782788 -0.0130145392695854 -0.2123817030594153 -0.2550292626960007 -0.5049268366774478 0.2128397588651423 0.2740560593051884 -0.1941418870268831 0.3096684962457407 0.0581576193198820 0.4209268575081797 0.1499593172661210 -0.1925590746592206 -0.5472292877802408 0.4543329704184014 0.2002027567371933 0.0040094115506845 0.3979373387545256 -0.1520881534833996 0.2010804514091296 0.3969669479129447 0.6321903535930841 0.3329156356041941 0.0163533225344391 -0.2638879466190056 Orthogonality of U: || U^T U - I ||_F = .28E-14 The orthogonal symplectic factor V is 0.4447147692018332 -0.6830166755147445 -0.0002576861753461 0.5781954611783305 -0.0375091627893695 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.5121756358795815 0.0297197140254867 0.4332229148788674 -0.3240527006890555 0.5330850295256576 0.0299719306696789 -0.2322624725320732 -0.0280846899680330 -0.3044255686880015 -0.1077641482535463 0.3664711365265602 0.3288511296455134 0.0588396016404466 0.1134221597062252 0.1047567336850027 -0.0069083614679702 0.3351358347080169 -0.4922707032978909 0.4293545450291777 0.4372821269061838 0.4535357098437908 0.1062866148880810 -0.3964092656837799 -0.2211800890450648 0.0350667323996154 0.0167847133528844 0.2843629278945263 0.5958979805231206 0.3097336757510830 -0.2086733033047175 0.4450432900616098 0.2950206358263727 -0.1617837757183794 -0.0376369332204945 -0.6746752660482708 0.0248567764822071 -0.2810759958040465 -0.1653113624869875 -0.3528780198620394 -0.0254898556119200 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.0000000000000000 0.4447147692018332 -0.6830166755147445 -0.0002576861753461 0.5781954611783305 -0.0375091627893695 -0.0299719306696789 0.2322624725320732 0.0280846899680330 0.3044255686880015 0.1077641482535463 0.5121756358795815 0.0297197140254867 0.4332229148788674 -0.3240527006890555 0.5330850295256576 0.0069083614679702 -0.3351358347080169 0.4922707032978909 -0.4293545450291777 -0.4372821269061838 0.3664711365265602 0.3288511296455134 0.0588396016404466 0.1134221597062252 0.1047567336850027 -0.0167847133528844 -0.2843629278945263 -0.5958979805231206 -0.3097336757510830 0.2086733033047175 0.4535357098437908 0.1062866148880810 -0.3964092656837799 -0.2211800890450648 0.0350667323996154 -0.0248567764822071 0.2810759958040465 0.1653113624869875 0.3528780198620394 0.0254898556119200 0.4450432900616098 0.2950206358263727 -0.1617837757183794 -0.0376369332204945 -0.6746752660482708 Orthogonality of V: || V^T V - I ||_F = .25E-14