MB03XD

Computing the eigenvalues of a Hamiltonian matrix

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the eigenvalues of a Hamiltonian matrix,

                [  A   G  ]         T        T
          H  =  [       T ],   G = G,   Q = Q,                  (1)
                [  Q  -A  ]

  where A, G and Q are real n-by-n matrices.

  Due to the structure of H all eigenvalues appear in pairs
  (lambda,-lambda). This routine computes the eigenvalues of H
  using an algorithm based on the symplectic URV and the periodic
  Schur decompositions as described in [1],

        T       [  T   G  ]
       U H V =  [       T ],                                    (2)
                [  0   S  ]

  where U and V are 2n-by-2n orthogonal symplectic matrices,
  S is in real Schur form and T is upper triangular.

  The algorithm is backward stable and preserves the eigenvalue
  pairings in finite precision arithmetic.

  Optionally, a symplectic balancing transformation to improve the
  conditioning of eigenvalues is computed (see MB04DD). In this
  case, the matrix H in decomposition (2) must be replaced by the
  balanced matrix.

  The SLICOT Library routine MB03ZD can be used to compute invariant
  subspaces of H from the output of this routine.

Specification
      SUBROUTINE MB03XD( BALANC, JOB, JOBU, JOBV, N, A, LDA, QG, LDQG,
     $                   T, LDT, U1, LDU1, U2, LDU2, V1, LDV1, V2, LDV2,
     $                   WR, WI, ILO, SCALE, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          BALANC, JOB, JOBU, JOBV
      INTEGER            ILO, INFO, LDA, LDQG, LDT, LDU1, LDU2, LDV1,
     $                   LDV2, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION   A(LDA,*), DWORK(*), QG(LDQG,*), SCALE(*),
     $                   T(LDT,*), U1(LDU1,*), U2(LDU2,*), V1(LDV1,*),
     $                   V2(LDV2,*), WI(*), WR(*)

Arguments

Mode Parameters

  BALANC  CHARACTER*1
          Indicates how H should be diagonally scaled and/or
          permuted to reduce its norm.
          = 'N': Do not diagonally scale or permute;
          = 'P': Perform symplectic permutations to make the matrix
                 closer to Hamiltonian Schur form. Do not diagonally
                 scale;
          = 'S': Diagonally scale the matrix, i.e., replace A, G and
                 Q by D*A*D**(-1), D*G*D and D**(-1)*Q*D**(-1) where
                 D is a diagonal matrix chosen to make the rows and
                 columns of H more equal in norm. Do not permute;
          = 'B': Both diagonally scale and permute A, G and Q.
          Permuting does not change the norm of H, but scaling does.

  JOB     CHARACTER*1
          Indicates whether the user wishes to compute the full
          decomposition (2) or the eigenvalues only, as follows:
          = 'E': compute the eigenvalues only;
          = 'S': compute matrices T and S of (2);
          = 'G': compute matrices T, S and G of (2).

  JOBU    CHARACTER*1
          Indicates whether or not the user wishes to compute the
          orthogonal symplectic matrix U of (2) as follows:
          = 'N': the matrix U is not computed;
          = 'U': the matrix U is computed.

  JOBV    CHARACTER*1
          Indicates whether or not the user wishes to compute the
          orthogonal symplectic matrix V of (2) as follows:
          = 'N': the matrix V is not computed;
          = 'V': the matrix V is computed.

Input/Output Parameters
  N       (input) INTEGER
          The order of the matrix A. N >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the matrix A.
          On exit, this array is overwritten. If JOB = 'S' or
          JOB = 'G', the leading N-by-N part of this array contains
          the matrix S in real Schur form of decomposition (2).

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

  QG      (input/output) DOUBLE PRECISION array, dimension
                         (LDQG,N+1)
          On entry, the leading N-by-N+1 part of this array must
          contain in columns 1:N the lower triangular part of the
          matrix Q and in columns 2:N+1 the upper triangular part
          of the matrix G.
          On exit, this array is overwritten. If JOB = 'G', the
          leading N-by-N+1 part of this array contains in columns
          2:N+1 the matrix G of decomposition (2).

  LDQG    INTEGER
          The leading dimension of the array QG.  LDQG >= max(1,N).

  T       (output) DOUBLE PRECISION array, dimension (LDT,N)
          On exit, if JOB = 'S' or JOB = 'G', the leading N-by-N
          part of this array contains the upper triangular matrix T
          of the decomposition (2). Otherwise, this array is used as
          workspace.

  LDT     INTEGER
          The leading dimension of the array T.  LDT >= MAX(1,N).

  U1      (output) DOUBLE PRECISION array, dimension (LDU1,N)
          On exit, if JOBU = 'U', the leading N-by-N part of this
          array contains the (1,1) block of the orthogonal
          symplectic matrix U of decomposition (2).

  LDU1    INTEGER
          The leading dimension of the array U1.  LDU1 >= 1.
          LDU1 >= N,    if JOBU = 'U'.

  U2      (output) DOUBLE PRECISION array, dimension (LDU2,N)
          On exit, if JOBU = 'U', the leading N-by-N part of this
          array contains the (2,1) block of the orthogonal
          symplectic matrix U of decomposition (2).

  LDU2    INTEGER
          The leading dimension of the array U2.  LDU2 >= 1.
          LDU2 >= N,    if JOBU = 'U'.

  V1      (output) DOUBLE PRECISION array, dimension (LDV1,N)
          On exit, if JOBV = 'V', the leading N-by-N part of this
          array contains the (1,1) block of the orthogonal
          symplectic matrix V of decomposition (2).

  LDV1    INTEGER
          The leading dimension of the array V1.  LDV1 >= 1.
          LDV1 >= N,    if JOBV = 'V'.

  V2      (output) DOUBLE PRECISION array, dimension (LDV2,N)
          On exit, if JOBV = 'V', the leading N-by-N part of this
          array contains the (2,1) block of the orthogonal
          symplectic matrix V of decomposition (2).

  LDV2    INTEGER
          The leading dimension of the array V2.  LDV2 >= 1.
          LDV2 >= N,    if JOBV = 'V'.

  WR      (output) DOUBLE PRECISION array, dimension (N)
  WI      (output) DOUBLE PRECISION array, dimension (N)
          On exit, the leading N elements of WR and WI contain the
          real and imaginary parts, respectively, of N eigenvalues
          that have nonnegative imaginary part. Their complex
          conjugate eigenvalues are not stored. If imaginary parts
          are zero (i.e., for real eigenvalues), only positive
          eigenvalues are stored.

  ILO     (output) INTEGER
          ILO is an integer value determined when H was balanced.
          The balanced A(i,j) = 0 if I > J and J = 1,...,ILO-1.
          The balanced Q(i,j) = 0 if J = 1,...,ILO-1 or
          I = 1,...,ILO-1.

  SCALE   (output) DOUBLE PRECISION array, dimension (N)
          On exit, if BALANC <> 'N', the leading N elements of this
          array contain details of the permutation and/or scaling
          factors applied when balancing H, see MB04DD.
          This array is not referenced if BALANC = 'N'.

Workspace
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0,  DWORK(1)  returns the optimal
          value of LDWORK, and   DWORK(2)  returns the 1-norm of the
          scaled (if BALANC = 'S' or 'B') Hamiltonian matrix.
          On exit, if  INFO = -25,  DWORK(1)  returns the minimum
          value of LDWORK.

  LDWORK  (input) INTEGER
          The dimension of the array DWORK. LDWORK >= max( 2, 8*N ).
          Moreover:
          If JOB = 'E' or 'S' and JOBU = 'N' and JOBV = 'N',
             LDWORK >= 7*N+N*N.
          If JOB = 'G' and JOBU = 'N' and JOBV = 'N',
             LDWORK >= max( 7*N+N*N, 2*N+3*N*N ).
          If JOB = 'G' and JOBU = 'U' and JOBV = 'N',
             LDWORK >= 7*N+2*N*N.
          If JOB = 'G' and JOBU = 'N' and JOBV = 'V',
             LDWORK >= 7*N+2*N*N.
          If JOB = 'G' and JOBU = 'U' and JOBV = 'V',
             LDWORK >= 7*N+N*N.
          For good performance, LDWORK must generally be larger.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

Error Indicator
  INFO     (output) INTEGER
           = 0:  successful exit;
           < 0:  if INFO = -i, the i-th argument had an illegal
                 value;
           > 0:  if INFO = i, the periodic QR algorithm failed to
                 compute all the eigenvalues, elements i+1:N of WR
                 and WI contain eigenvalues which have converged.

References
  [1] Benner, P., Mehrmann, V., and Xu, H.
      A numerically stable, structure preserving method for
      computing the eigenvalues of real Hamiltonian or symplectic
      pencils.
      Numer. Math., Vol. 78(3), pp. 329-358, 1998.

  [2] Benner, P., Mehrmann, V., and Xu, H.
      A new method for computing the stable invariant subspace of a
      real Hamiltonian matrix,  J. Comput. Appl. Math., vol. 86,
      pp. 17-43, 1997.

Further Comments
  None
Example

Program Text

*     MB03XD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      DOUBLE PRECISION ZERO, ONE
      PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0 )
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX
      PARAMETER        ( NMAX = 100 )
      INTEGER          LDA, LDQG, LDRES, LDT, LDU1, LDU2, LDV1, LDV2,
     $                 LDWORK
      PARAMETER        ( LDA = NMAX, LDQG = NMAX, LDRES = NMAX,
     $                   LDT = NMAX, LDU1 = NMAX, LDU2 = NMAX,
     $                   LDV1 = NMAX, LDV2 = NMAX,
     $                   LDWORK = 3*NMAX*NMAX + 7*NMAX )
*     .. Local Scalars ..
      CHARACTER*1      BALANC, JOB, JOBU, JOBV
      INTEGER          I, ILO, INFO, J, N
      DOUBLE PRECISION TEMP
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA, NMAX), DWORK(LDWORK), QG(LDQG, NMAX+1),
     $                 RES(LDRES,3*NMAX+1), SCALE(NMAX), T(LDT,NMAX),
     $                 U1(LDU1,NMAX), U2(LDU2, NMAX), V1(LDV1,NMAX),
     $                 V2(LDV2, NMAX), WI(NMAX), WR(NMAX)
*     .. External Functions ..
      LOGICAL          LSAME
      DOUBLE PRECISION DLANGE, DLAPY2, MA02JD
      EXTERNAL         DLANGE, DLAPY2, LSAME, MA02JD
*     .. External Subroutines ..
      EXTERNAL         DGEMM, DLACPY, MB03XD, MB04DD
*     .. Executable Statements ..
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * )  N, BALANC, JOB, JOBU, JOBV
      IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         CALL DLACPY( 'All', N, N, A, LDA, RES(1,N+1), LDRES )
         READ ( NIN, FMT = * ) ( ( QG(I,J), J = 1,N+1 ), I = 1,N )
         CALL DLACPY( 'All', N, N+1, QG, LDQG, RES(1,2*N+1), LDRES )
         INFO = 0
         CALL MB03XD( BALANC, JOB, JOBU, JOBV, N, A, LDA, QG, LDQG,
     $                T, LDT, U1, LDU1, U2, LDU2, V1, LDV1, V2, LDV2,
     $                WR, WI, ILO, SCALE, DWORK, LDWORK, INFO )
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            WRITE ( NOUT, FMT = 99997 )
            DO 20  I = 1, N
               WRITE ( NOUT, FMT = 99996 ) I, WR(I), WI(I)
20          CONTINUE
            IF ( LSAME( JOB, 'S' ).OR.LSAME( JOB, 'G' ) ) THEN
               WRITE ( NOUT, FMT = 99995 )
               DO 30  I = 1, N
                  WRITE ( NOUT, FMT = 99990 ) ( A(I,J), J = 1,N )
30             CONTINUE
               WRITE ( NOUT, FMT = 99994 )
               DO 40  I = 1, N
                  WRITE ( NOUT, FMT = 99990 ) ( T(I,J), J = 1,N )
40             CONTINUE
            END IF
            IF ( LSAME( JOB, 'G' ) ) THEN
               WRITE ( NOUT, FMT = 99993 )
               DO 50  I = 1, N
                  WRITE ( NOUT, FMT = 99990 ) ( QG(I,J+1), J = 1,N )
50             CONTINUE
            END IF
C
            IF ( LSAME( JOB, 'G' ).AND.LSAME( JOBU, 'U' ).AND.
     $           LSAME( JOBV, 'V' ) ) THEN
               CALL MB04DD( BALANC, N, RES(1,N+1), LDRES, RES(1,2*N+1),
     $                      LDRES, I, DWORK, INFO )
               CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
     $                     RES(1,N+1), LDRES, V1, LDV1, ZERO, RES,
     $                     LDRES )
               CALL DSYMM ( 'Left', 'Upper', N, N, -ONE, RES(1,2*N+2),
     $                      LDRES, V2, LDV2, ONE, RES, LDRES )
               CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N,
     $                     -ONE, U1, LDU1, T, LDT, ONE, RES, LDRES )
               TEMP = DLANGE( 'Frobenius', N, N, RES, LDRES, DWORK )
               CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
     $                     RES(1,N+1), LDRES, V2, LDV2, ZERO, RES,
     $                     LDRES )
               CALL DSYMM( 'Left', 'Upper', N, N, ONE, RES(1,2*N+2),
     $                     LDRES, V1, LDV1, ONE, RES, LDRES )
               CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N,
     $                     -ONE, U1, LDU1, QG(1,2), LDQG, ONE, RES,
     $                     LDRES )
               CALL DGEMM( 'No Transpose', 'Transpose', N, N, N,
     $                     -ONE, U2, LDU2, A, LDA, ONE, RES, LDRES )
               TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES,
     $                                      LDRES, DWORK ) )
               CALL DSYMM( 'Left', 'Lower', N, N, ONE, RES(1,2*N+1),
     $                     LDRES, V1, LDV1, ZERO, RES, LDRES )
               CALL DGEMM( 'Transpose', 'No Transpose', N, N, N, ONE,
     $                     RES(1,N+1), LDRES, V2, LDV2, ONE, RES,
     $                     LDRES )
               CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
     $                     U2, LDU2, T, LDT, ONE, RES, LDRES )
               TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES,
     $                                      LDRES, DWORK ) )


               CALL DSYMM( 'Left', 'Lower', N, N, ONE, RES(1,2*N+1),
     $                     LDRES, V2, LDV2, ZERO, RES, LDRES )
               CALL DGEMM( 'Transpose', 'No Transpose', N, N, N, -ONE,
     $                     RES(1,N+1), LDRES, V1, LDV1, ONE, RES,
     $                     LDRES )
               CALL DGEMM( 'No Transpose', 'No Transpose', N, N, N, ONE,
     $                     U2, LDU2, QG(1,2), LDQG, ONE, RES, LDRES )
               CALL DGEMM( 'No Transpose', 'Transpose', N, N, N,
     $                     -ONE, U1, LDU1, A, LDA, ONE, RES, LDRES )
               TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES,
     $                                      LDRES, DWORK ) )
               WRITE ( NOUT, FMT = 99987 ) TEMP
            END IF
C
            IF ( LSAME( JOBU, 'U' ) ) THEN
               WRITE ( NOUT, FMT = 99992 )
               DO 60  I = 1, N
                  WRITE ( NOUT, FMT = 99990 )
     $               ( U1(I,J), J = 1,N ), ( U2(I,J), J = 1,N )
60             CONTINUE
               DO 70  I = 1, N
                  WRITE ( NOUT, FMT = 99990 )
     $               ( -U2(I,J), J = 1,N ), ( U1(I,J), J = 1,N )
70             CONTINUE
               WRITE ( NOUT, FMT = 99986 ) MA02JD( .FALSE., .FALSE., N,
     $                 U1, LDU1, U2, LDU2, RES, LDRES )
            END IF
            IF ( LSAME( JOBV, 'V' ) ) THEN
               WRITE ( NOUT, FMT = 99991 )
               DO 80  I = 1, N
                  WRITE ( NOUT, FMT = 99990 )
     $               ( V1(I,J), J = 1,N ), ( V2(I,J), J = 1,N )
80             CONTINUE
               DO 90  I = 1, N
                  WRITE ( NOUT, FMT = 99990 )
     $               ( -V2(I,J), J = 1,N ), ( V1(I,J), J = 1,N )
90             CONTINUE
               WRITE ( NOUT, FMT = 99985 ) MA02JD( .FALSE., .FALSE., N,
     $                 V1, LDV1, V2, LDV2, RES, LDRES )
            END IF
            IF ( LSAME( BALANC, 'S' ).OR.LSAME( BALANC, 'B' ) ) THEN
               WRITE ( NOUT, FMT = 99989 )
               DO 100  I = 1, N
                  WRITE ( NOUT, FMT = 99996 ) I, SCALE(I)
100            CONTINUE
            END IF
         END IF
      END IF
*
99999 FORMAT (' MB03XD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB03XD = ',I2)
99997 FORMAT (' The eigenvalues are',//'   i',6X,
     $        'WR(i)',6X,'WI(i)',/)
99996 FORMAT (I4,3X,F8.4,3X,F8.4)
99995 FORMAT (/' The matrix S of the reduced matrix is')
99994 FORMAT (/' The matrix T of the reduced matrix is')
99993 FORMAT (/' The matrix G of the reduced matrix is')
99992 FORMAT (/' The orthogonal symplectic factor U is')
99991 FORMAT (/' The orthogonal symplectic factor V is')
99990 FORMAT (20(1X,F19.16))
99989 FORMAT (/' The diagonal scaling factors are ',//'   i',6X,
     $        'SCALE(i)',/)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' Residual: || H*V - U*R ||_F = ',G7.2)
99986 FORMAT (/' Orthogonality of U: || U^T U - I ||_F = ',G7.2)
99985 FORMAT (/' Orthogonality of V: || V^T V - I ||_F = ',G7.2)
      END
Program Data
MB03XD EXAMPLE PROGRAM DATA
	5	N	G	U	V
  3.7588548168313685e-001  9.1995720669587144e-001  1.9389317998466821e-001  5.4878212553858818e-001  6.2731478808399666e-001
  9.8764628987858052e-003  8.4472150190817474e-001  9.0481233416635698e-001  9.3158335257969060e-001  6.9908013774533750e-001
  4.1985780631021896e-001  3.6775288246828447e-001  5.6920574967174709e-001  3.3519743020639464e-001  3.9718395379261456e-001
  7.5366962581358721e-001  6.2080133182114383e-001  6.3178992922175603e-001  6.5553105501201447e-001  4.1362889533818031e-001
  7.9387177473231862e-001  7.3127726446634478e-001  2.3441295540825388e-001  3.9190420688900335e-001  6.5521294635567051e-001
  1.8015558545989005e-001  4.1879254941592853e-001  2.7203760737317784e-001  2.8147214090719214e-001  1.7731904815580199e-001  3.4718672159409536e-001
  2.7989257702981651e-001  3.5042861661866559e-001  2.5565572408444881e-001  4.3977750345993827e-001  2.8855026075967616e-001  2.1496327083014577e-001
  1.7341073886969158e-001  3.9913855375815932e-001  4.0151317011596516e-001  4.0331887464437133e-001  2.6723538667317948e-001  3.7110275606849241e-001
  3.7832182695699140e-001  3.3812641389556752e-001  8.4360396433341395e-002  4.3672540277019672e-001  7.0022228267365608e-002  3.8210230186291916e-001
  1.9548216143135175e-001  2.9055490787446736e-001  4.7670819669167425e-001  1.4636498713707141e-001  2.7670398401519275e-001  2.9431082727794898e-002
Program Results
 MB03XD EXAMPLE PROGRAM RESULTS

 The eigenvalues are

   i      WR(i)      WI(i)

   1     3.1941     0.0000
   2     0.1350     0.3179
   3    -0.1350     0.3179
   4     0.0595     0.2793
   5    -0.0595     0.2793

 The matrix S of the reduced matrix is
 -3.1844761777714723  0.1612357243439330 -0.0628592203751083  0.2449004200921966  0.1974400149992633
  0.0000000000000000 -0.1510667773167795  0.4260444411622876 -0.1775026035208666  0.3447278421198404
  0.0000000000000000 -0.1386140422054281 -0.3006779624777419  0.2944143257134117  0.3456440339120381
  0.0000000000000000  0.0000000000000000  0.0000000000000000 -0.2710128384740589  0.0933189808067083
  0.0000000000000000  0.0000000000000000  0.0000000000000000  0.4844146572359630  0.2004347508746724

 The matrix T of the reduced matrix is
  3.2038208121776366  0.1805955192510636  0.2466389119377562 -0.2539149302433404 -0.0359238844381174
  0.0000000000000000 -0.7196686433290822  0.0000000000000000  0.2428659121580382 -0.0594190100670709
  0.0000000000000000  0.0000000000000000 -0.1891741194498124 -0.3309578443491325 -0.0303520731950498
  0.0000000000000000  0.0000000000000000  0.0000000000000000 -0.4361574461961496  0.0000000000000000
  0.0000000000000000  0.0000000000000000  0.0000000000000000  0.0000000000000000  0.1530894573304220

 The matrix G of the reduced matrix is
 -0.0370982242678458  0.0917788436945730 -0.0560402416315236  0.1345152517579191  0.0256668227276665
  0.0652183678916926 -0.0700457231988328  0.0350041175858816 -0.2233868768749277 -0.1171980260782820
 -0.0626428681377074  0.2327575351902838 -0.1251515732208133 -0.0177816046663209  0.3696921118421109
  0.0746042309265569 -0.0828007611045243  0.0217427473546003 -0.1157775118548850 -0.3161183681200607
  0.1374372236164838  0.1002727885506978  0.4021556774753987 -0.0431072263235625  0.1067394572547804

 Residual: || H*V - U*R ||_F = .38E-14

 The orthogonal symplectic factor U is
  0.3806883009357249 -0.0347810363019666 -0.5014665065895627  0.5389691288472425  0.2685446895251499 -0.1795922007470744  0.1908329820840935  0.0868799433942041  0.3114741142062469 -0.2579907627915116
  0.4642712665555327 -0.5942766860716397  0.4781179763952658  0.2334370556238072  0.0166790369048881 -0.2447897730222852 -0.1028403314750053 -0.1157840914576285 -0.1873268885694422  0.1700708002861556
  0.2772789197782788 -0.0130145392695854 -0.2123817030594153 -0.2550292626960007 -0.5049268366774478 -0.2243335325285329  0.3180998613802498  0.3315380214794935  0.1977859924739816  0.5072476567310036
  0.4209268575081797  0.1499593172661210 -0.1925590746592206 -0.5472292877802408  0.4543329704184014 -0.2128397588651423 -0.2740560593051884  0.1941418870268831 -0.3096684962457407 -0.0581576193198820
  0.3969669479129447  0.6321903535930841  0.3329156356041941  0.0163533225344391 -0.2638879466190056 -0.2002027567371933 -0.0040094115506845 -0.3979373387545256  0.1520881534833996 -0.2010804514091296
  0.1795922007470744 -0.1908329820840935 -0.0868799433942041 -0.3114741142062469  0.2579907627915116  0.3806883009357249 -0.0347810363019666 -0.5014665065895627  0.5389691288472425  0.2685446895251499
  0.2447897730222852  0.1028403314750053  0.1157840914576285  0.1873268885694422 -0.1700708002861556  0.4642712665555327 -0.5942766860716397  0.4781179763952658  0.2334370556238072  0.0166790369048881
  0.2243335325285329 -0.3180998613802498 -0.3315380214794935 -0.1977859924739816 -0.5072476567310036  0.2772789197782788 -0.0130145392695854 -0.2123817030594153 -0.2550292626960007 -0.5049268366774478
  0.2128397588651423  0.2740560593051884 -0.1941418870268831  0.3096684962457407  0.0581576193198820  0.4209268575081797  0.1499593172661210 -0.1925590746592206 -0.5472292877802408  0.4543329704184014
  0.2002027567371933  0.0040094115506845  0.3979373387545256 -0.1520881534833996  0.2010804514091296  0.3969669479129447  0.6321903535930841  0.3329156356041941  0.0163533225344391 -0.2638879466190056

 Orthogonality of U: || U^T U - I ||_F = .28E-14

 The orthogonal symplectic factor V is
  0.4447147692018332 -0.6830166755147445 -0.0002576861753461  0.5781954611783305 -0.0375091627893695  0.0000000000000000  0.0000000000000000  0.0000000000000000  0.0000000000000000  0.0000000000000000
  0.5121756358795815  0.0297197140254867  0.4332229148788674 -0.3240527006890555  0.5330850295256576  0.0299719306696789 -0.2322624725320732 -0.0280846899680330 -0.3044255686880015 -0.1077641482535463
  0.3664711365265602  0.3288511296455134  0.0588396016404466  0.1134221597062252  0.1047567336850027 -0.0069083614679702  0.3351358347080169 -0.4922707032978909  0.4293545450291777  0.4372821269061838
  0.4535357098437908  0.1062866148880810 -0.3964092656837799 -0.2211800890450648  0.0350667323996154  0.0167847133528844  0.2843629278945263  0.5958979805231206  0.3097336757510830 -0.2086733033047175
  0.4450432900616098  0.2950206358263727 -0.1617837757183794 -0.0376369332204945 -0.6746752660482708  0.0248567764822071 -0.2810759958040465 -0.1653113624869875 -0.3528780198620394 -0.0254898556119200
  0.0000000000000000  0.0000000000000000  0.0000000000000000  0.0000000000000000  0.0000000000000000  0.4447147692018332 -0.6830166755147445 -0.0002576861753461  0.5781954611783305 -0.0375091627893695
 -0.0299719306696789  0.2322624725320732  0.0280846899680330  0.3044255686880015  0.1077641482535463  0.5121756358795815  0.0297197140254867  0.4332229148788674 -0.3240527006890555  0.5330850295256576
  0.0069083614679702 -0.3351358347080169  0.4922707032978909 -0.4293545450291777 -0.4372821269061838  0.3664711365265602  0.3288511296455134  0.0588396016404466  0.1134221597062252  0.1047567336850027
 -0.0167847133528844 -0.2843629278945263 -0.5958979805231206 -0.3097336757510830  0.2086733033047175  0.4535357098437908  0.1062866148880810 -0.3964092656837799 -0.2211800890450648  0.0350667323996154
 -0.0248567764822071  0.2810759958040465  0.1653113624869875  0.3528780198620394  0.0254898556119200  0.4450432900616098  0.2950206358263727 -0.1617837757183794 -0.0376369332204945 -0.6746752660482708

 Orthogonality of V: || V^T V - I ||_F = .25E-14

Return to index