MB03UD

Computation of the singular value decomposition of a real upper triangular matrix

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute all, or part, of the singular value decomposition of a
  real upper triangular matrix.

  The N-by-N upper triangular matrix A is factored as  A = Q*S*P',
  where Q and P are N-by-N orthogonal matrices and S is an
  N-by-N diagonal matrix with non-negative diagonal elements,
  SV(1), SV(2), ..., SV(N), ordered such that

     SV(1) >= SV(2) >= ... >= SV(N) >= 0.

  The columns of Q are the left singular vectors of A, the diagonal
  elements of S are the singular values of A and the columns of P
  are the right singular vectors of A.

  Either or both of Q and P' may be requested.
  When P' is computed, it is returned in A.

Specification
      SUBROUTINE MB03UD( JOBQ, JOBP, N, A, LDA, Q, LDQ, SV, DWORK,
     $                   LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         JOBP, JOBQ
      INTEGER           INFO, LDA, LDQ, LDWORK, N
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), DWORK(*), Q(LDQ,*), SV(*)

Arguments

Mode Parameters

  JOBQ    CHARACTER*1
          Specifies whether the user wishes to compute the matrix Q
          of left singular vectors as follows:
          = 'V':  Left singular vectors are computed;
          = 'N':  No left singular vectors are computed.

  JOBP    CHARACTER*1
          Specifies whether the user wishes to compute the matrix P'
          of right singular vectors as follows:
          = 'V':  Right singular vectors are computed;
          = 'N':  No right singular vectors are computed.

Input/Output Parameters
  N       (input) INTEGER
          The order of the matrix A.  N >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N upper triangular part of this
          array must contain the upper triangular matrix A.
          On exit, if JOBP = 'V', the leading N-by-N part of this
          array contains the N-by-N orthogonal matrix  P'; otherwise
          the N-by-N upper triangular part of A is used as internal
          workspace. The strictly lower triangular part of A is set
          internally to zero before the reduction to bidiagonal form
          is performed.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
          If JOBQ = 'V', the leading N-by-N part of this array
          contains the orthogonal matrix Q.
          If JOBQ = 'N', Q is not referenced.

  LDQ     INTEGER
          The leading dimension of array Q.
          LDQ >= 1,  and when JOBQ = 'V',  LDQ >= MAX(1,N).

  SV      (output) DOUBLE PRECISION array, dimension (N)
          The N singular values of the matrix A, sorted in
          descending order.

Workspace
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK;
          if INFO > 0, DWORK(2:N) contains the unconverged
          superdiagonal elements of an upper bidiagonal matrix B
          whose diagonal is in SV (not necessarily sorted).
          B satisfies A = Q*B*P', so it has the same singular
          values as A, and singular vectors related by Q and P'.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK >= MAX(1,5*N).
          For optimum performance LDWORK should be larger.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          > 0:  the QR algorithm has failed to converge. In this
                case INFO specifies how many superdiagonals did not
                converge (see the description of DWORK).
                This failure is not likely to occur.

Method
  The routine reduces A to bidiagonal form by means of elementary
  reflectors and then uses the QR algorithm on the bidiagonal form.

Further Comments
  None
Example

Program Text

*     MB03UD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX
      PARAMETER        ( NMAX = 10 )
      INTEGER          LDA, LDQ
      PARAMETER        ( LDA = NMAX, LDQ = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = MAX( 1, 5*NMAX ) )
*     .. Local Scalars ..
      CHARACTER*1      JOBQ, JOBP
      INTEGER          I, INFO, J, N
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), DWORK(LDWORK), Q(LDQ,NMAX),
     $                 SV(NMAX)
*     .. External Functions ..
      LOGICAL          LSAME
*     .. External Subroutines ..
      EXTERNAL         MB03UD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, JOBQ, JOBP
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
*        Compute the singular values and vectors.
         CALL MB03UD( JOBQ, JOBP, N, A, LDA, Q, LDQ, SV, DWORK,
     $                LDWORK, INFO )
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            WRITE ( NOUT, FMT = 99997 )
            WRITE ( NOUT, FMT = 99995 ) ( SV(I), I = 1,N )
            IF ( LSAME( JOBP, 'V' ) ) THEN
               WRITE ( NOUT, FMT = 99996 )
               DO 10 I = 1, N
                  WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   10          CONTINUE
            END IF
            IF ( LSAME( JOBQ, 'V' ) ) THEN
               WRITE ( NOUT, FMT = 99994 )
               DO 20 I = 1, N
                  WRITE ( NOUT, FMT = 99995 ) ( Q(I,J), J = 1,N )
   20          CONTINUE
            END IF
         END IF
      END IF
*
      STOP
*
99999 FORMAT (' MB03UD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB03UD = ',I2)
99997 FORMAT (' Singular values are ',I5)
99996 FORMAT (/' The transpose of the right singular vectors matrix is '
     $       )
99995 FORMAT (8X,20(1X,F8.4))
99994 FORMAT (/' The left singular vectors matrix is ')
99993 FORMAT (/' N is out of range.',/' N = ',I5)
      END
Program Data
 MB03UD EXAMPLE PROGRAM DATA
   4     V      V
  -1.0  37.0 -12.0 -12.0
   0.0 -10.0   0.0   4.0
   0.0   0.0   7.0  -6.0
   0.0   0.0   0.0  -9.0
Program Results
 MB03UD EXAMPLE PROGRAM RESULTS

 Singular values are 
          42.0909  11.7764   5.4420   0.2336

 The transpose of the right singular vectors matrix is 
           0.0230  -0.9084   0.2759   0.3132
           0.0075  -0.1272   0.5312  -0.8376
           0.0092   0.3978   0.8009   0.4476
           0.9997   0.0182  -0.0177  -0.0050

 The left singular vectors matrix is 
          -0.9671  -0.0882  -0.0501  -0.2335
           0.2456  -0.1765  -0.4020  -0.8643
           0.0012   0.7425   0.5367  -0.4008
          -0.0670   0.6401  -0.7402   0.1945

Return to index