MB03QX

Eigenvalues of an upper quasi-triangular matrix

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the eigenvalues of an upper quasi-triangular matrix.

Specification
      SUBROUTINE MB03QX( N, T, LDT, WR, WI, INFO )
C     .. Scalar Arguments ..
      INTEGER          INFO, LDT, N
C     .. Array Arguments ..
      DOUBLE PRECISION T(LDT, *), WI(*), WR(*)

Arguments

Input/Output Parameters

  N       (input) INTEGER
          The order of the matrix T.  N >= 0.

  T       (input) DOUBLE PRECISION array, dimension(LDT,N)
          The upper quasi-triangular matrix T.

  LDT     INTEGER
          The leading dimension of the array T.  LDT >= max(1,N).

  WR, WI  (output) DOUBLE PRECISION arrays, dimension (N)
          The real and imaginary parts, respectively, of the
          eigenvalues of T. The eigenvalues are stored in the same
          order as on the diagonal of T. If T(i:i+1,i:i+1) is a
          2-by-2 diagonal block with complex conjugated eigenvalues
          then WI(i) > 0 and WI(i+1) = -WI(i).

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.

Further Comments
  None
Example

Program Text

  None
Program Data
  None
Program Results
  None

Return to Supporting Routines index