Purpose
To compute the eigenvalues of an upper quasi-triangular matrix.Specification
SUBROUTINE MB03QX( N, T, LDT, WR, WI, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDT, N C .. Array Arguments .. DOUBLE PRECISION T(LDT, *), WI(*), WR(*)Arguments
Input/Output Parameters
N (input) INTEGER The order of the matrix T. N >= 0. T (input) DOUBLE PRECISION array, dimension(LDT,N) The upper quasi-triangular matrix T. LDT INTEGER The leading dimension of the array T. LDT >= max(1,N). WR, WI (output) DOUBLE PRECISION arrays, dimension (N) The real and imaginary parts, respectively, of the eigenvalues of T. The eigenvalues are stored in the same order as on the diagonal of T. If T(i:i+1,i:i+1) is a 2-by-2 diagonal block with complex conjugated eigenvalues then WI(i) > 0 and WI(i+1) = -WI(i).Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None