Purpose
To compute the eigenvalues of an upper quasi-triangular matrix pencil.Specification
SUBROUTINE MB03QV( N, S, LDS, T, LDT, ALPHAR, ALPHAI, BETA, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDS, LDT, N C .. Array Arguments .. DOUBLE PRECISION ALPHAI(*), ALPHAR(*), BETA(*), S(LDS,*), T(LDT,*)Arguments
Input/Output Parameters
N (input) INTEGER The order of the matrices S and T. N >= 0. S (input) DOUBLE PRECISION array, dimension(LDS,N) The upper quasi-triangular matrix S. LDS INTEGER The leading dimension of the array S. LDS >= max(1,N). T (input) DOUBLE PRECISION array, dimension(LDT,N) The upper triangular matrix T. LDT INTEGER The leading dimension of the array T. LDT >= max(1,N). ALPHAR (output) DOUBLE PRECISION array, dimension (N) ALPHAI (output) DOUBLE PRECISION array, dimension (N) BETA (output) DOUBLE PRECISION array, dimension (N) On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, are the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i, and BETA(j),j=1,...,N, are the diagonals of the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real Schur form of (A,B) were further reduced to triangular form using 2-by-2 complex unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then the j-th and (j+1)-st eigenvalues are a complex conjugate pair, with ALPHAI(j+1) negative.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None