Purpose
To compute the relevant eigenvalues of a real N-by-N skew- Hamiltonian/Hamiltonian pencil aS - bH, with ( B F ) ( 0 I ) S = T Z = J Z' J' Z and H = ( ), J = ( ), (1) ( G -B' ) ( -I 0 ) where the notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'C', an orthogonal basis of the right deflating subspace of aS - bH corresponding to the eigenvalues with strictly negative real part is computed. Optionally, if COMPU = 'C', an orthonormal basis of the companion subspace, range(P_U) [1], which corresponds to the eigenvalues with strictly negative real part, is computed.Specification
SUBROUTINE MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG, $ LDFG, NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI, $ BETA, IWORK, LIWORK, DWORK, LDWORK, BWORK, $ IWARN, INFO ) C .. Scalar Arguments .. CHARACTER COMPQ, COMPU, ORTH INTEGER INFO, IWARN, LDB, LDFG, LDQ, LDU, LDWORK, LDZ, $ LIWORK, N, NEIG C .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) DOUBLE PRECISION ALPHAI( * ), ALPHAR( * ), B( LDB, * ), $ BETA( * ), DWORK( * ), FG( LDFG, * ), $ Q( LDQ, * ), U( LDU, * ), Z( LDZ, * )Arguments
Mode Parameters
COMPQ CHARACTER*1 Specifies whether to compute the right deflating subspace corresponding to the eigenvalues of aS - bH with strictly negative real part. = 'N': do not compute the deflating subspace; = 'C': compute the deflating subspace and store it in the leading subarray of Q. COMPU CHARACTER*1 Specifies whether to compute the companion subspace corresponding to the eigenvalues of aS - bH with strictly negative real part. = 'N': do not compute the companion subspace; = 'C': compute the companion subspace and store it in the leading subarray of U. ORTH CHARACTER*1 If COMPQ = 'C' and/or COMPU = 'C', specifies the technique for computing the orthogonal basis of the deflating subspace, and/or of the companion subspace, as follows: = 'P': QR factorization with column pivoting; = 'S': singular value decomposition. If COMPQ = 'N' and COMPU = 'N', the ORTH value is not used.Input/Output Parameters
N (input) INTEGER The order of the pencil aS - bH. N >= 0, even. Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) On entry, the leading N-by-N part of this array must contain the non-trivial factor Z in the factorization S = J Z' J' Z of the skew-Hamiltonian matrix S. On exit, if COMPQ = 'C' or COMPU = 'C', the leading N-by-N part of this array contains the transformed upper ~ triangular matrix Z11 (see METHOD), after moving the eigenvalues with strictly negative real part to the top of the pencil (3). The strictly lower triangular part is not zeroed. If COMPQ = 'N' and COMPU = 'N', the leading N-by-N part of this array contains the matrix Z obtained by the SLICOT Library routine MB04AD just before the application of the periodic QZ algorithm. The elements of the (2,1) block, i.e., in the rows N/2+1 to N and in the columns 1 to N/2 are not set to zero, but are unchanged on exit. LDZ INTEGER The leading dimension of the array Z. LDZ >= MAX(1, N). B (input) DOUBLE PRECISION array, dimension (LDB, N/2) On entry, the leading N/2-by-N/2 part of this array must contain the matrix B. LDB INTEGER The leading dimension of the array B. LDB >= MAX(1, N/2). FG (input) DOUBLE PRECISION array, dimension (LDFG, N/2+1) On entry, the leading N/2-by-N/2 lower triangular part of this array must contain the lower triangular part of the symmetric matrix G, and the N/2-by-N/2 upper triangular part of the submatrix in the columns 2 to N/2+1 of this array must contain the upper triangular part of the symmetric matrix F. LDFG INTEGER The leading dimension of the array FG. LDFG >= MAX(1, N/2). NEIG (output) INTEGER If COMPQ = 'C' or COMPU = 'C', the number of eigenvalues in aS - bH with strictly negative real part. Q (output) DOUBLE PRECISION array, dimension (LDQ, 2*N) On exit, if COMPQ = 'C', the leading N-by-NEIG part of this array contains an orthogonal basis of the right deflating subspace corresponding to the eigenvalues of aS - bH with strictly negative real part. The remaining part of this array is used as workspace. If COMPQ = 'N', this array is not referenced. LDQ INTEGER The leading dimension of the array Q. LDQ >= 1, if COMPQ = 'N'; LDQ >= MAX(1, 2*N), if COMPQ = 'C'. U (output) DOUBLE PRECISION array, dimension (LDU, 2*N) On exit, if COMPU = 'C', the leading N-by-NEIG part of this array contains an orthogonal basis of the companion subspace corresponding to the eigenvalues of aS - bH with strictly negative real part. The remaining part of this array is used as workspace. If COMPU = 'N', this array is not referenced. LDU INTEGER The leading dimension of the array U. LDU >= 1, if COMPU = 'N'; LDU >= MAX(1, N), if COMPU = 'C'. ALPHAR (output) DOUBLE PRECISION array, dimension (N/2) The real parts of each scalar alpha defining an eigenvalue of the pencil aS - bH. ALPHAI (output) DOUBLE PRECISION array, dimension (N/2) The imaginary parts of each scalar alpha defining an eigenvalue of the pencil aS - bH. If ALPHAI(j) is zero, then the j-th eigenvalue is real. BETA (output) DOUBLE PRECISION array, dimension (N/2) The scalars beta that define the eigenvalues of the pencil aS - bH. If INFO = 0, the quantities alpha = (ALPHAR(j),ALPHAI(j)), and beta = BETA(j) represent together the j-th eigenvalue of the pencil aS - bH, in the form lambda = alpha/beta. Since lambda may overflow, the ratios should not, in general, be computed. Due to the skew-Hamiltonian/ Hamiltonian structure of the pencil, only half of the spectrum is saved in ALPHAR, ALPHAI and BETA. Specifically, only eigenvalues with imaginary parts greater than or equal to zero are stored; their conjugate eigenvalues are not stored. If imaginary parts are zero (i.e., for real eigenvalues), only positive eigenvalues are stored. The remaining eigenvalues have opposite signs. If IWARN = 1, one or more BETA(j) is not representable, and the eigenvalues are returned as described below (see the description of the argument IWARN).Workspace
IWORK INTEGER array, dimension (LIWORK) On exit, if INFO = -20, IWORK(1) returns the minimum value of LIWORK. On exit, if INFO = 0 and IWARN = 1, then IWORK(1), ..., IWORK(N/2) return the scaling parameters for the eigenvalues of the pencil aS - bH (see IWARN). LIWORK INTEGER The dimension of the array IWORK. LIWORK >= N + 18, if COMPQ = 'N' and COMPU = 'N'; LIWORK >= MAX( N + 18, N/2 + 48, 5*N/2 + 1 ), otherwise. DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK, and DWORK(2) returns the machine base, b. On exit, if INFO = -22, DWORK(1) returns the minimum value of LDWORK. LDWORK INTEGER The dimension of the array DWORK. LDWORK >= c*N**2 + max( N*N + MAX( N/2+252, 432 ), MAX(8*N+48,171) ), where c = a, if COMPU = 'N', c = a+1, if COMPU = 'C', and a = 6, if COMPQ = 'N', a = 9, if COMPQ = 'C'. For good performance LDWORK should be generally larger. If LDWORK = -1 a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message is issued by XERBLA. BWORK LOGICAL array, dimension (N/2)Warning Indicator
IWARN INTEGER = 0: no warning; = 1: the eigenvalues will under- or overflow if evaluated; therefore, the j-th eigenvalue is represented by the quantities alpha = (ALPHAR(j),ALPHAI(j)), beta = BETA(j), and gamma = IWORK(j) in the form lambda = (alpha/beta) * b**gamma, where b is the machine base (often 2.0), returned in DWORK(2).Error Indicator
INFO INTEGER = 0: succesful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: periodic QZ iteration failed in the SLICOT Library routines MB04AD, MB04CD or MB03BB (QZ iteration did not converge or computation of the shifts failed); = 2: standard QZ iteration failed in the SLICOT Library routines MB04CD or MB03CD (called by MB03ID); = 3: a numerically singular matrix was found in the SLICOT Library routine MB03GD (called by MB03ID); = 4: the singular value decomposition failed in the LAPACK routine DGESVD (for ORTH = 'S').Method
First, the decompositions of S and H are computed via orthogonal matrices Q1 and Q2 and orthogonal symplectic matrices U1 and U2, such that ( T11 T12 ) Q1' T U1 = Q1' J Z' J' U1 = ( ), ( 0 T22 ) ( Z11 Z12 ) U2' Z Q2 = ( ), (2) ( 0 Z22 ) ( H11 H12 ) Q1' H Q2 = ( ), ( 0 H22 ) where T11, T22', Z11, Z22', H11 are upper triangular and H22' is upper quasi-triangular. Then, orthogonal matrices Q3, Q4 and U3 are found, for the matrices ~ ( T22' 0 ) ~ ( T11' 0 ) ~ ( 0 H11 ) Z11 = ( ), Z22 = ( ), H = ( ), ( 0 Z11 ) ( 0 Z22 ) ( -H22' 0 ) ~ ~ ~ ~ such that Z11 := U3' Z11 Q4, Z22 := U3' Z22 Q3 are upper ~ ~ triangular and H11 := Q3' H Q4 is upper quasi-triangular. The following matrices are computed: ~ ( -T12' 0 ) ~ ( 0 H12 ) Z12 := U3' ( ) Q3 and H12 := Q3' ( ) Q3. ( 0 Z12 ) ( H12' 0 ) Then, an orthogonal matrix Q and an orthogonal symplectic matrix U are found such that the eigenvalues with strictly negative real parts of the pencil ~ ~ ~ ~ ~ ~ ( Z11 Z12 )' ( Z11 Z12 ) ( H11 H12 ) a J ( ~ ) J' ( ~ ) - b ( ~ ) (3) ( 0 Z22 ) ( 0 Z22 ) ( 0 -H11' ) are moved to the top of this pencil. Finally, an orthogonal basis of the right deflating subspace and an orthogonal basis of the companion subspace corresponding to the eigenvalues with strictly negative real part are computed. See also page 11 in [1] for more details.References
[1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H. Numerical Solution of Real Skew-Hamiltonian/Hamiltonian Eigenproblems. Tech. Rep., Technical University Chemnitz, Germany, Nov. 2007.Numerical Aspects
3 The algorithm is numerically backward stable and needs O(N ) floating point operations.Further Comments
This routine does not perform any scaling of the matrices. Scaling might sometimes be useful, and it should be done externally.Example
Program Text
* MB03LF EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX PARAMETER ( NMAX = 50 ) INTEGER LDB, LDFG, LDQ, LDU, LDWORK, LDZ, LIWORK PARAMETER ( LDB = NMAX/2, LDFG = NMAX/2, LDQ = 2*NMAX, $ LDU = NMAX, LDZ = NMAX, $ LDWORK = 10*NMAX*NMAX + $ MAX( NMAX*NMAX + $ MAX( NMAX/2 + 252, 432 ), $ MAX( 8*NMAX + 48, 171 ) ), $ LIWORK = MAX( NMAX + 18, NMAX/2 + 48, $ 5*NMAX/2 + 1 ) ) * * .. Local Scalars .. CHARACTER COMPQ, COMPU, ORTH INTEGER I, INFO, IWARN, J, M, N, NEIG * * .. Local Arrays .. LOGICAL BWORK( NMAX/2 ) INTEGER IWORK( LIWORK ) DOUBLE PRECISION ALPHAI( NMAX/2 ), ALPHAR( NMAX/2 ), $ B( LDB, NMAX/2 ), BETA( NMAX/2 ), $ DWORK( LDWORK ), FG( LDFG, NMAX/2+1 ), $ Q( LDQ, 2*NMAX ), U( LDU, 2*NMAX ), $ Z( LDZ, NMAX ) * * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * * .. External Subroutines .. EXTERNAL MB03LF * * .. Intrinsic Functions .. INTRINSIC MAX, MOD * * .. Executable Statements .. * WRITE( NOUT, FMT = 99999 ) * Skip the heading in the data file and read in the data. READ( NIN, FMT = * ) READ( NIN, FMT = * ) COMPQ, COMPU, ORTH, N IF( N.LT.0 .OR. N.GT.NMAX .OR. MOD( N, 2 ).NE.0 ) THEN WRITE( NOUT, FMT = 99998 ) N ELSE M = N/2 READ( NIN, FMT = * ) ( ( Z( I, J ), J = 1, N ), I = 1, N ) READ( NIN, FMT = * ) ( ( B( I, J ), J = 1, M ), I = 1, M ) READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, M+1 ), I = 1, M ) * Compute the eigenvalues and orthogonal bases of the right * deflating subspace and companion subspace of a real * skew-Hamiltonian/Hamiltonian pencil, corresponding to the * eigenvalues with strictly negative real part. CALL MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG, LDFG, $ NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI, BETA, IWORK, $ LIWORK, DWORK, LDWORK, BWORK, IWARN, INFO ) * IF( INFO.NE.0 ) THEN WRITE( NOUT, FMT = 99997 ) INFO ELSE WRITE( NOUT, FMT = 99996 ) DO 10 I = 1, N WRITE( NOUT, FMT = 99995 ) ( Z( I, J ), J = 1, N ) 10 CONTINUE WRITE( NOUT, FMT = 99994 ) WRITE( NOUT, FMT = 99995 ) ( ALPHAR( I ), I = 1, M ) WRITE( NOUT, FMT = 99993 ) WRITE( NOUT, FMT = 99995 ) ( ALPHAI( I ), I = 1, M ) WRITE( NOUT, FMT = 99992 ) WRITE( NOUT, FMT = 99995 ) ( BETA( I ), I = 1, M ) IF( LSAME( COMPQ, 'C' ) .AND. NEIG.GT.0 ) THEN WRITE( NOUT, FMT = 99991 ) DO 20 I = 1, N WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, NEIG ) 20 CONTINUE END IF IF( LSAME( COMPU, 'C' ) .AND. NEIG.GT.0 ) THEN WRITE( NOUT, FMT = 99990 ) DO 30 I = 1, N WRITE( NOUT, FMT = 99995 ) ( U( I, J ), J = 1, NEIG ) 30 CONTINUE END IF IF( LSAME( COMPQ, 'C' ) .OR. LSAME( COMPU, 'C' ) ) $ WRITE( NOUT, FMT = 99989 ) NEIG END IF END IF STOP * 99999 FORMAT ( 'MB03LF EXAMPLE PROGRAM RESULTS', 1X ) 99998 FORMAT ( 'N is out of range.', /, 'N = ', I5 ) 99997 FORMAT ( 'INFO on exit from MB03LF = ', I2 ) 99996 FORMAT (/'The matrix Z on exit is ' ) 99995 FORMAT ( 50( 1X, F8.4 ) ) 99994 FORMAT (/'The vector ALPHAR is ' ) 99993 FORMAT (/'The vector ALPHAI is ' ) 99992 FORMAT (/'The vector BETA is ' ) 99991 FORMAT (/'The deflating subspace corresponding to the ', $ 'eigenvalues with negative real part is ' ) 99990 FORMAT (/'The companion subspace corresponding to the ', $ 'eigenvalues with negative real part is ' ) 99989 FORMAT (/'The number of eigenvalues in the initial pencil with ', $ 'negative real part is ', I2 ) ENDProgram Data
MB03LF EXAMPLE PROGRAM DATA C C P 8 3.1472 4.5751 -0.7824 1.7874 -2.2308 -0.6126 2.0936 4.5974 4.0579 4.6489 4.1574 2.5774 -4.5383 -1.1844 2.5469 -1.5961 -3.7301 -3.4239 2.9221 2.4313 -4.0287 2.6552 -2.2397 0.8527 4.1338 4.7059 4.5949 -1.0777 3.2346 2.9520 1.7970 -2.7619 1.3236 4.5717 1.5574 1.5548 1.9483 -3.1313 1.5510 2.5127 -4.0246 -0.1462 -4.6429 -3.2881 -1.8290 -0.1024 -3.3739 -2.4490 -2.2150 3.0028 3.4913 2.0605 4.5022 -0.5441 -3.8100 0.0596 0.4688 -3.5811 4.3399 -4.6817 -4.6555 1.4631 -0.0164 1.9908 0.6882 -3.3782 -3.3435 1.8921 -0.3061 2.9428 1.0198 2.4815 -4.8810 -1.8878 -2.3703 -0.4946 -1.6288 0.2853 1.5408 -4.1618 -2.4013 -2.7102 0.3834 -3.9335 3.1730 -3.1815 -2.3620 4.9613 4.6190 3.6869 3.6929 0.7970 0.4986 -4.9537 -4.1556 3.5303 1.2206 -1.4905 0.1325 -1.0022Program Results
MB03LF EXAMPLE PROGRAM RESULTS The matrix Z on exit is 4.4128 0.1059 -1.8709 1.2963 -4.3448 2.7633 2.3580 2.1931 0.0000 10.0337 -1.9797 1.8052 -1.0112 1.1335 1.2374 0.3107 0.0000 0.0000 8.9476 1.8523 -1.8578 -0.5807 -1.4157 1.3007 0.0000 0.0000 0.0000 -7.0889 -2.1193 -2.1634 -2.4393 0.1148 0.0765 1.0139 0.0000 -1.5390 -8.3187 -5.0172 0.7738 -2.8626 1.1884 -0.9225 0.0000 0.2905 0.0000 6.4090 2.1994 -2.5933 -0.5931 0.1981 0.0000 -0.5280 0.0000 0.0000 4.7155 2.3817 1.8591 -1.8416 0.0000 -0.0807 0.0000 0.0000 0.0000 -5.3153 The vector ALPHAR is 0.7353 0.0000 0.5168 -0.5168 The vector ALPHAI is 0.0000 0.7190 0.5610 0.5610 The vector BETA is 2.0000 2.8284 11.3137 11.3137 The deflating subspace corresponding to the eigenvalues with negative real part is -0.2509 0.3670 0.0416 -0.3267 -0.7968 -0.1019 0.0263 0.0338 -0.5795 -0.0139 -0.0491 -0.5217 -0.4637 0.2992 -0.4403 -0.1345 0.3071 -0.0917 -0.1364 0.2013 0.3447 -0.7601 -0.0495 0.2426 The companion subspace corresponding to the eigenvalues with negative real part is -0.3219 0.6590 0.1693 -0.5216 -0.1829 -0.0689 -0.0413 -0.4664 -0.1359 0.1310 -0.1702 0.4543 -0.3598 0.2660 0.3355 -0.5082 -0.0512 -0.6035 -0.3582 -0.4513 0.4649 0.2991 0.0932 -0.2207 The number of eigenvalues in the initial pencil with negative real part is 3