Purpose
To compute a unitary matrix Q for a complex regular 2-by-2 skew-Hamiltonian/Hamiltonian pencil aS - bH with ( S11 S12 ) ( H11 H12 ) S = ( ), H = ( ), ( 0 S11' ) ( 0 -H11' ) such that J Q' J' (aS - bH) Q is upper triangular but the eigenvalues are in reversed order. The matrix Q is represented by ( CO SI ) Q = ( ). ( -SI' CO ) The notation M' denotes the conjugate transpose of the matrix M.Arguments
Input/Output Parameters
S11 (input) COMPLEX*16 Upper left element of the skew-Hamiltonian matrix S. S12 (input) COMPLEX*16 Upper right element of the skew-Hamiltonian matrix S. H11 (input) COMPLEX*16 Upper left element of the Hamiltonian matrix H. H12 (input) COMPLEX*16 Upper right element of the Hamiltonian matrix H. CO (output) DOUBLE PRECISION Upper left element of Q. SI (output) COMPLEX*16 Upper right element of Q.Method
The algorithm uses unitary transformations as described on page 43 in [1].References
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H. Numerical Computation of Deflating Subspaces of Embedded Hamiltonian Pencils. Tech. Rep. SFB393/99-15, Technical University Chemnitz, Germany, June 1999.Numerical Aspects
The algorithm is numerically backward stable.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None